首页 > 论文 > 光谱学与光谱分析 > 35卷 > 10期(pp:2787-2791)

球载TDLAS的对流层CO2浓度廓线探测

Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

大气中CO2主要的源和汇都集中在对流层, 精确地获取对流层CO2浓度廓线分布, 对研究CO2的垂直输送和全球气候演变具有重要意义。 基于可调谐半导体激光吸收光谱(tunable diode laser absorption spectroscopy, TDLAS)高分辨、 高灵敏度和快速响应等特点, 研制了采用直接吸收技术的小型化CO2探测系统, 选取位于2 004.02 nm处的R(16), ν1+ν3吸收谱线, 避免了附近H2O分子的吸收干扰, 对CO2浓度廓线进行了球载测量, 获取了10 km以下对流层中CO2的分子数密度分布。 受限于球载测量环境, 系统采用紧凑型设计, 在单块电路板上实现激光器驱动、 弱信号调理, 光谱数据采集及浓度计算等功能, 受嵌入式微处理器的运算能力和硬件资源限制, 对浓度反演算法进行了优化, 避免冗余计算, 降低了算法耗时。 和采用波长调制技术的TDLAS传统仪器相比, 借助光程20 m的开放式Herriott多次反射池, 采用直接吸收技术, 避免了浓度标定步骤, 提高了对测量环境的适应性, 通用性的硬件和软件结构可适用于测量不同气体, 只需更换激光器和调整算法关键参数。 小型化的设计思想降低功耗, 减小体积, 兼顾了响应速度和测量精度, 室温条件下功耗小于1.5 W, 单板体积120 mm×100 mm×25 mm, 1.5 s时间响应下的测量精度为±0.6×10-6, 经验证, 该系统可在对流层内实现CO2 15 m垂直空间分辨的高精度检测, 是一种可行的气体廓线球载探测手段。

Abstract

The main source and sink of CO2 in the atmosphere are concentrated in the troposphere. It is of great significance to the study of CO2 flux and global climate change to obtain the accurate tropospheric CO2 concentration profile. For the characteristics of high resolution, high sensitivity and fast response of tunable diode laser absorption spectroscopy (TDLAS), a compact balloon-borne system based on direct absorption was developed to detect the CO2 concentration profiles by use of the 2 004.02 nm, R(16), ν1+ν3 line without the interfere of H2O absorption and the CO2 density of the number of molecules below 10 km in the troposphere was obtained. Due to the balloon-borne environment, a compact design of one single board integrated with laser driver, signal conditioning, spectra acquiring and concentration retrieving was developed. Limited by the working capability and hardware resources of embedded micro-processor, the spectra processing algorithm was optimized to reduce the time-cost. Compared with the traditional TDLAS sensors with WMS technique, this system was designed based on the direct absorption technique by means of an open-path Herriott cell with 20 m optical-path, which avoided the process of standardization and enhanced the environmental adaptation. The universal design of hardware and software platform achieved diverse gas measuring by changing the laser and adjusting some key parameters in algorithm. The concept of compact design helped to reduce the system’s power and volume and balanced the response speed and measure precision. The power consumes below 1.5 W in room temperature and the volume of the single board is 120 mm×100 mm×25 mm, and the measurement accuracy is ±0.6×10-6 at 1.5 s response time. It has been proved that the system can realize high precision detection of CO2 profile at 15 m vertical resolution in troposphere and TDLAS is an available method for balloon-borne detection.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.5

DOI:10.3964/j.issn.1000-0593(2015)10-2787-05

基金项目:国家“973”计划项目(2010CB234607), 国家自然科学基金项目(61108034)和中科院战略性先导科技专项(XDA05040102)资助

收稿日期:2014-06-03

修改稿日期:2014-10-25

网络出版日期:--

作者单位    点击查看

姚路:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
刘文清:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
刘建国:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
阚瑞峰:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
许振宇:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
阮俊:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
袁松:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥230031

联系人作者:姚路(lyao@aiofm.ac.cn)

备注:姚路, 1987年生, 中国科学院安徽光学精密机械研究所硕士研究生.

【1】Krings T, Gerilowski K, Buchwitz M, et al. Atmospheric Measurement Techniques Discussions, 2011, 4(2): 2207.

【2】Le Barbu T, Vinogradov I, Durry G, et al. Advances in Space Research, 2006, 38(4): 718.

【3】Ghysels M, Durry G, Amarouche N, et al. Applied Physics B-Lasers and Optics, 2012, 107(1): 213.

【4】Berthet G, Renard J B, Ghysels M, et al. Journal of Atmospheric Chemistry, 2013, 70(3): 197.

【5】Montouy N, Hauchecorne A, Pommereau J P, et al. Atmospheric Chemistry and Physics, 2009, 9(14): 5299.

【6】Kan Ruifeng, Liu Wenqing, Zhang Yujun, et al. Chinese Optical Letters, 2007, 1(5): 54.

【7】Ghysels M, Durry G, Amarouche N, et al. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2013, 107: 55.

【8】Lins B, Zinn R P, Engelberecht R, et al. Applied Physics B: Lasers and Optics, 2010, 100(2): 367.

【9】Tarsitano C G, Webster C R. Applied Optics, 2007, 46(28): 6923.

【10】Durry G, Pouchet I, Amarouche N, et al. Applied Optics, 2000, 39(30): 5609.

引用该论文

YAO Lu,LIU Wen-qing,LIU Jian-guo*,KAN Rui-feng,XU Zhen-yu,RUAN Jun,YUAN Song. Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2787-2791

姚路,刘文清,刘建国,阚瑞峰,许振宇,阮俊,袁松. 球载TDLAS的对流层CO2浓度廓线探测[J]. 光谱学与光谱分析, 2015, 35(10): 2787-2791

被引情况

【1】阚瑞峰,夏晖晖,许振宇,姚路,阮俊,范雪丽. 激光吸收光谱流场诊断技术应用研究与进展. 中国激光, 2018, 45(9): 911005--1

【2】聂伟,阚瑞峰,杨晨光,陈兵,许振宇,刘文清. 可调谐二极管激光吸收光谱技术的应用研究进展. 中国激光, 2018, 45(9): 911001--1

【3】袁 峰,高 晶,姚 路,陈 兵,何亚柏,胡 迈,许振宇,阚瑞峰. 球载CRDS高灵敏度甲烷测量系统的研制. 光学 精密工程, 2020, 28(9): 1881-1892

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF