首页 > 论文 > 光学学报 > 36卷 > 3期(pp:0327003--1)

量子高斯密钥分发中后处理的安全性分析

Security Analysis of Post-Processing in Quantum Gaussian Key Distributed

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在量子高斯密钥分发实验中,后处理是提升数据协调效率和保证安全密钥提取的关键技术之一。通过分层纠错协议给出一种具体后处理的数据协调方案,并采用准循环低密度奇偶校验码与传统低密度奇偶校验码相级联的方式对信息进行压缩编码。结合零拍探测下的连续变量量子密钥分发,分析了个体攻击和集体攻击下采用正向协调和逆向协调的实验方案中密钥提取的安全性。实验结果表明:在码长为2 × 105 ,三、四级码率为0.3 0.95 的数据协调方案中协调效率可达91.2% 。采用最优攻击下可提取安全密钥量为3.98 kbit/s ,而传输距离达30 km 左右,证明了所提协调方案的安全性,能够满足城域网络的通信要求。

Abstract

In quantum Gaussian key distribution experiment, post-processing is one of key technologies to improve data reconciliation efficiency and guarantee the security of the extracted secret key. A specific data reconciliation of post-processing is proposed through the slice error correction which uses the quasi-cyclic low density parity check code and traditional low density parity check code to cascade to compress and code. To analyze the security of secret key extracted, direct reconciliation and reverse reconciliation scheme are proposed in individual attack and collective attack on the continuous variable quantum key distribution with homodyne detection. The result indicates that the data reconciliation efficiency can achieve 91.2% when code length is 2×105 and the third and fourth level code rate is 0.3/0.95. The amount of the extracted secret key can reach 3.98 kbit/s using the optimal attack and transmission distance can reach about 30 km, which proves the safety of the data reconciliation scheme and can satisfy the requirement of the metropolitan area network communication.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O431

DOI:10.3788/aos201636.0327003

所属栏目:量子光学

基金项目:山西省国际科技合作计划项目(2014081027-1)、山西省基础研究项目(2014011007-2)、山西省回国留学人员科研资助项目(2014-012)

收稿日期:2015-09-14

修改稿日期:2015-10-24

网络出版日期:--

作者单位    点击查看

阎金:山西大学物理电子工程学院, 山西 太原 030006
王晓凯:山西大学物理电子工程学院, 山西 太原 030006
郭大波:山西大学物理电子工程学院, 山西 太原 030006
孙艺:山西大学物理电子工程学院, 山西 太原 030006

联系人作者:阎金(yanjinco@163.com)

备注:阎金(1989—),男,硕士研究生,主要从事量子密钥分发方面的研究。

【1】Hoi Kwong Lo, Hoi Fung Chau. Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science, 1998, 283 (5410): 2050-2056.

【2】Huang Chunhui, Wang Xuejin. Research and prospect on continuous variable quantum communication[J]. Journal of Electronic Measurement and Instrument, 2014, 28(1): 1-9.
黄春晖, 王雪津. 连续变量量子通信的研究与展望[J]. 电子测量与仪器学报, 2014, 28(1): 1-9.

【3】Liu Youming, Wang Chao, Huang Duan, et al.. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.
刘友明, 汪超, 黄端, 等. 高速连续变量量子密钥分发系统同步技术研究[J]. 光学学报, 2015, 35(1): 0106006.

【4】Wenchao Dai, Yuan Lu, Jun Zhu, et al.. An integrated quantum secure communication system[J]. Science China, 2011, 54(12): 2578- 2591.

【5】Xuyang Wang, Zengliang Bai, Shaofeng Wang, et al.. Four-state modulation continuous variable quantum key distribution over a 30- km fiber and analysis of excess noise[J]. Chinese Physics Letters, 2013, 30(1): 010305.

【6】Anthony Leverrier, Philippe Grangier. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation[J]. Physical Review A, 2011, 83(4): 042312.

【7】Paul Jouguet, Sébastien Kunz-Jacques, Anthony Leverrier, et al.. Experimental demonstration of long-distance continuous-variable quantum key distribution[J]. Nature Photonics, 2013, 7 (5): 378-381.

【8】Fabian Furrer, Torsten Franz, Mario Berta, et al.. Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks[J]. Physical Review Letters, 2012, 109(10): 100502.

【9】Gilles Van Assche, Jean Cardinal, Nicolas J Cerf. Reconciliation of a quantum-distributed Gaussian key[J]. IEEE Transactions on Information Theory, 2004, 50(2): 394-400.

【10】Angelos D Liveris, Zixiang Xiong, Costas N Georghiades. Compression of binary sources with side information at the decoder using LDPC codes[J]. Communications Letters IEEE, 2002, 6 (10): 440-442.

【11】Ahmed Attia Abotabl, Aria Nosratinia. Multi-level coding and multi-stage decoding in MAC, broadcast, and relay channel[C]. IEEE International Symposium on Information Theory, 2014, 2014: 96-100.

【12】Guo Dabo, Liu Gang, Zhang Ning, et al.. Reverse reconciliation of quantum Gaussian distributed key[J]. Acta Sinica Quantum Optica, 2013, 19(3): 219-226.
郭大波, 刘纲, 张宁, 等. 量子高斯密钥分发的逆向数据协调[J]. 量子光学学报, 2013, 19(3): 219-226.

【13】Juane Li, Keke Liu, Shu Lin, et al.. Algebraic quasi-cyclic LDPC codes: construction, low error-floor, large girth and a reduced-complexity decoding scheme[J]. IEEE Transactions on Communications, 2014, 62(8): 2626-2637.

【14】Dabo Guo, Yanhuang Zhang, Yunyan Wang. Performance optimization for the reconciliation of Gaussian quantum key distribution[J]. Acta Optica Sinica, 2014, 34(1): 0127001.
郭大波, 张彦煌, 王云艳. 高斯量子密钥分发数据协调的性能优化[J]. 光学学报, 2014, 34 (1): 0127001.

【15】Lu Zhixin, Yu Li, Li Kang, et al.. Reconciliation for continuous variable quantum key distribution based on reverse reconciliation[J]. Science China Physics, Mechanics and Astronomy, 2009, 39(11): 1606-1612.
逯志欣, 于丽, 李康, 等. 基于逆向协调的连续变量量子密钥分发数据协调[J]. 中国科学G 辑: 物理学, 力学, 天文学, 2009, 39(11): 1606-1612.

【16】Song Hanchong, Gong Lihua, Zhou Nanrun. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation[J]. Acta Physics Sinica, 2012, 61(15): 154206.
宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议[J]. 物理学报, 2012, 61(15): 154206.

【17】Xinlu Zhi, Yu Li, Kang Li, et al.. Reverse reconciliation for continuous variable quantum key distribution[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(1): 100-105.

【18】Chen Yan, Shen Yong, Zou Hongxin. An all-fiber continuous variable quantum key distribution based on multi-bits coding of single pulse[J]. Acta Optica Sinica, 2015, 35(7): 0727001.
陈岩, 沈咏, 邹宏新. 基于单脉冲多位编码的全光纤连续变量量子密钥分发[J]. 光学学报, 2015, 35(7): 0727001.

【19】Xiangchun Ma, Shihai Sun, Musheng Jiang, et al.. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2013, 89(4): 042335.

【20】David J C MacKay. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45 (2): 399-431.

【21】Yingyu Tai, Lan Lan, Lingqi Zeng, et al.. Algebraic construction of quasi-cyclic LDPC codes for the AWGN and erasure channels[J]. IEEE Transactions on Communications, 2006, 54(10): 1765-1774.

【22】Wang Yunyan, Guo Dabo, Zhang Yanhuang, et al.. Algorithm of multidimensional reconciliation for continuous-variable quantum key distribution[J]. Acta Optica Sinica, 2014, 34(8): 0827002.
王云艳, 郭大波, 张彦煌, 等. 连续变量量子密钥分发多维数据协调算法[J]. 光学学报, 2014, 34(8): 0827002.

引用该论文

Yan Jin,Wang Xiaokai,Guo Dabo,Sun Yi. Security Analysis of Post-Processing in Quantum Gaussian Key Distributed[J]. Acta Optica Sinica, 2016, 36(3): 0327003

阎金,王晓凯,郭大波,孙艺. 量子高斯密钥分发中后处理的安全性分析[J]. 光学学报, 2016, 36(3): 0327003

被引情况

【1】江英华,张仕斌,杨帆,昌燕,张航. (4,4)的量子秘密共享协议及其模型化检测. 激光与光电子学进展, 2017, 54(12): 122704--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF