首页 > 论文 > 强激光与粒子束 > 28卷 > 6期(pp:64116--1)

石墨烯/聚乙撑二氧噻吩薄膜储能特性

Enhanced electrochemical performance of laser scribed graphene films incorporating poly(3, 4-ethylenedioxythiophene) nanoparticles

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了有效利用石墨烯和导电聚合物材料, 光雕石墨烯/聚3, 4-乙撑二氧噻吩(LSG/PEDOT)复合薄膜通过一种灵巧的光雕工艺制备出来。在此复合薄膜中, 每种组分对薄膜的电化学性能提升都有独特的贡献。循环伏安、交流阻抗及恒流充放电测试用来检测薄膜的电化学性能。结果显示, 在引入PEDOT纳米颗粒后, LSG/PEDOT复合薄膜显示出更好的能量存储能力。复合薄膜的比容量达到64.33 F/cm3, 是光雕石墨烯比容量(3.89 F/cm3)的20倍, 复合薄膜经过1000次循环后仍能保持初始容量的94.6%。复合薄膜电化学性能的提升主要是由于引入的PEDOT纳米颗粒既阻挡了石墨烯的层层堆叠, 又增加了整个薄膜的比表面积。此种灵活的光雕工艺还可以用来大规模制备超级电容器电极。

Abstract

For effective use of graphene and conducting polymer, the composite films of laser scribed graphene (LSG) combined with poly(3, 4-ethylenedioxythiophene) (PEDOT) are prepared with a facile laser scribing technology. Each component in the hybrid films provides unique and crucial function to achieve optimized electrochemical properties. In the presence of PEDOT nanoparticles, the LSG/PEDOT hybrid films are found to possess the better energy storage ability. The electrochemical performances of the films are evaluated with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charging-discharging (GCD) techniques. Volumetric capacity of composite film (64.33 F/cm3) is much higher than that of pure laser-scribed graphene film (3.89 F/cm3). The hybrid film exhibits excellent charge/discharge rate and good cycling stability, retaining 94.6% of its initial charge after 1000 cycles. The electrochemical performance improvement is primarily due to the effect of PEDOT nanoparticles in prevention of agglomeration of LSG layers and the increased surface areas accessible to electrolyte ions. It is anticipated that the PEDOT nanoparticles inserted into graphene oxide layers following laser scribing reduction procedure could be a promising large scale fabrication method for supercapacitor electrodes.

投稿润色
补充资料

中图分类号:TN242

DOI:10.11884/hplpb201628.064116

所属栏目:微纳技术

基金项目:supported by National Natural Science Foundation of China (51477026; 61471085)

收稿日期:2015-11-25

修改稿日期:2015-12-18

网络出版日期:--

作者单位    点击查看

陈 燕:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
徐建华:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
杨亚杰:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
徐 璐:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
毛喜玲:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
杨文耀:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
赵月涛:电子科技大学 光电信息学院, 电子薄膜与集成器件国家重点实验室, 成都 610054

联系人作者:陈燕(chenyanxynu@163.com)

备注:Chen Yan(1987—), female, PhD candidate, engaged in organic electronic materials and devices

【1】Xu Bin, Yue Shufang, Sui Zhuyin, et al. What is the choice for supercapacitors: graphene or graphene oxide?[J]. Energy Environ Sci, 2011, 4(8): 2826-2830.

【2】Liang Kun, Gu Taoli, Cao Zeyuan, et al. In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode[J]. Nano Energy, 2014, 9: 245-251.

【3】Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4270.

【4】An K H, Kim W S, Park Y S, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Adv Funct Mater, 2001, 11(5): 387-392.

【5】Zhang Hao, Cao Gaoping, Wang Zhiyong, et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability[J]. Electrochem Commun, 2008, 10(7): 1056-1059.

【6】Frackowiak E, Bèguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons[J]. Carbon, 2002, 40(10): 1775-1787.

【7】Park B O, Lokhande C D, Park H S, et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness[J]. J Power Sources, 2004, 134(1): 148-152.

【8】Jang Jong H, Han Sangjin, Hyeon T, et al. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes[J]. J Power Sources, 2003, 123(1): 79-85.

【9】Hu Chichang, Chen Weichun. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors[J]. Electrochim Acta, 2004, 49(21): 3469-3477.

【10】Osaka T, Momma T, Ito H, et al. Performances of lithium/gel electrolyte/polypyrrole secondary batteries[J]. J Power Sources, 1997, 68(2): 392-396.

【11】Wang Jie, Xu Youlong, Chen Xi, et al. Electrochemical supercapacitor electrode material based on poly(3, 4-ethylenedioxythiophene)/polypyrrole composite[J]. J Power Sources, 2007, 163(2): 1120-1125.

【12】Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.

【13】Strong V, Dubin S, El-Kady M F, et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices[J]. ACS Nano, 2012, 6(2): 1395-1403.

【14】El-kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.

【15】Liu Wenwen, Feng Yaqiang, Yan Xingbin, et al. Superior micro-supercapacitors based on graphene quantum dots[J]. Adv Funct Mater, 2013, 23(33): 4111-4122.

【16】El-kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nat Commun, 2013, 4(2): 1475-1475.

【17】Byon H R, Lee S W, Chen S, et al. Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors[J]. Carbon, 2011, 49(2): 457-467.

【18】Lü Wei, Sun Feng, Tang Daiming, et al. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance[J]. J Mater Chem, 2011, 21(25): 9014-9019.

【19】Murugan A V, Muraliganth T, Manthiram A. Correction to rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage[J]. Chem Mater, 2010, 22(8): 2692-2692.

【20】Si Y, Samulski E T. Exfoliated graphene separated by platinum nanoparticles[J]. Chem Mater, 2008, 20(21): 6792-6797.

【21】Ahonen H J, Lukkari J, Kankare J. N-and p-doped poly(3, 4-ethylenedioxythiophene): two electronically conducting states of the polymer[J]. Macromolecules, 2000, 33(18): 6787-6793.

【22】Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.

【23】Zhang Kaixin, Xu Jingkun, Zhu Xiaofei, et al. Poly(3, 4-ethylenedioxythiophene) nanorods grown on graphene oxide sheets as electrochemical sensing platform for rutin[J]. Journal of Electroanalytical Chemistry, 2015, 739(1): 66-72.

【24】Ju H, Kim M, Kim J. Enhanced thermoelectric performance by alcoholic solvents effects in highly conductive benzenesulfonate-doped poly(3, 4-ethylenedioxythiophene)/graphene composites[J]. Journal of Applied Polymer Science, 2015, 132(24): 42107-42116.

引用该论文

Chen Yan,Xu Jianhua,Yang Yajie,Xu Lu,Mao Xiling,Yang Wenyao,Zhao Yuetao. Enhanced electrochemical performance of laser scribed graphene films incorporating poly(3, 4-ethylenedioxythiophene) nanoparticles[J]. High Power Laser and Particle Beams, 2016, 28(6): 064116

陈 燕,徐建华,杨亚杰,徐 璐,毛喜玲,杨文耀,赵月涛. 石墨烯/聚乙撑二氧噻吩薄膜储能特性[J]. 强激光与粒子束, 2016, 28(6): 064116

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF