首页 > 论文 > 光学学报 > 36卷 > 5期(pp:0511002--1)

基于梯度显著性的水面无人艇的海天线检测方法

Sea Sky Line Detection Method of Unmanned Surface Vehicle Based on Gradient Saliency

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

水面无人艇技术在气象监测、海面搜救、对敌侦察、精确打击等方向发挥着越来越重要的作用,但实际海面环境中的云层辐射、波浪反射、气象条件等光学图像形成中的各种干扰因素,使海天线的准确检测难以实现。为了解决这一问题,提出一种基于梯度显著性的海天线检测方法,梯度显著性的计算有效增强了海天线的直线特征并抑制了各种干扰因素,采用区域生长方法实现了对海天线的检测和辨识,最后使用XL水面无人艇在实际海面环境下采集的光学图像进行验证,结果证明了所用方法的准确性和实时性。

Abstract

Unmanned surface vehicle (USV) plays a more and more important role in various areas such as meteorological monitoring, maritime search and rescue, enemy reconnaissance, and precision strike. However, special features in real marine environment such as cloud clutter, sea glint, and weather conditions result in various kinds of interference in optical images, which makes it very difficult to detect the sea sky line accurately. To solve this problem, a sea sky line detection method is proposed based on gradient saliency. The line features of sea sky line are enhanced effectively through the computation of gradient saliency; other interference factors are suppressed; sea sky line detection and identification are achieved by region growing method. In the end, the proposed method is tested on optical images from “XL” USV in real marine environment and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of detection rate and real-time performance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/aos201636.0511002

所属栏目:成像系统

基金项目:国家863计划(2014AA09A509)、国家自然科学基金(51009040)、中央高校基本科研业务费自由探索计划(HEUCF150118)

收稿日期:2015-12-01

修改稿日期:2016-01-06

网络出版日期:--

作者单位    点击查看

王博:哈尔滨工程大学水下机器人技术国防科技重点实验室,黑龙江 哈尔滨 150001
苏玉民:哈尔滨工程大学水下机器人技术国防科技重点实验室,黑龙江 哈尔滨 150001
万磊:哈尔滨工程大学水下机器人技术国防科技重点实验室,黑龙江 哈尔滨 150001
庄佳园:哈尔滨工程大学水下机器人技术国防科技重点实验室,黑龙江 哈尔滨 150001
张磊:哈尔滨工程大学水下机器人技术国防科技重点实验室,黑龙江 哈尔滨 150001

联系人作者:王博(wb@hrbeu.edu.cn)

备注:王博(1985-),男,博士研究生,讲师,主要从事水下成像与机器视觉方面的研究。

【1】Kim S, Lee J. Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track [J]. Sensors, 2014, 14(7): 13210-13242.

【2】Zou R B, Shi C C. A sea-sky line identification algorithm based on shearlets for infrared image[J]. Advanced Materials Research, 2014, 846: 1031-1035.

【3】Zeng Wenjing, Wan Lei, Zhang Tiedong, et al.. Fast detection of sea line based on the visible characteristics of marine images[J]. Acta Optica Sinica, 2012, 32(1): 0111001.
曾文静, 万磊, 张铁栋, 等. 基于海面可见光图像的海界线快速检测[J].光学学报, 2012, 32(1): 0111001.

【4】Dong Y F, Zhang Y F, Zhu C, et al.. Extracting sea-sky-line based on improved local complexity[C]// Conference on Computer Mechatronics, Control and Electronic Engineering. IEEE, 2010, 6: 82-85.

【5】Lan J H, Jia Z L, Wu C H, et al.. Sea-land-line extraction using weighted optimum neighborhood algorithm[C]// International Conference on Optical Instruments and Technology (OIT 2013). SPIE, 2013, 9045: 90451M.

【6】Tang D, Sun G, Wang D H, et al.. Research on infrared ship detection method in sea-sky background[C]//ISPDI 2013-Fifth International Symposium on Photoelectronic Detection and Imaging. SPIE, 2013, 8907: 89072H.

【7】Yang Linna, An Wei, Lin Zaiping, et al.. Small target detection based on visual saliency improved by spatial distance[J]. Acta Optica Sinica, 2015, 35(7): 0715004.
杨林娜, 安玮, 林再平, 等. 基于空间距离改进的视觉显著性弱小目标检测[J]. 光学学报, 2015, 35(7): 0715004.

【8】Lin Chang, He Bingwei, Dong Shengsheng. An indoor object fast detection method based on visual attention mechanism of fusion depth information in RGB images[J]. Chinese J Lasers, 2014, 41(11): 1108005.
林昌, 何炳蔚, 董升升. 融合深度信息的室内RGB图像视觉显著物体快速检测方法[J]. 中国激光, 2014, 41(11): 1108005.

【9】Cheng M M, Zhang G X, Mitra N J, et al.. Global contrast based salient region detection[J]. IEEE Transactions on Computer Vision and Pattern Recognition, 2011, 37(3): 409-416.

【10】Di Zenzo S. A note on the gradient of a multi-image[J]. Computer Vision, Graphics and Image Processing, 1986, 33(1): 116-125.

【11】von Gioi R G, Jakubowicz J, Morel J-M, et al.. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF