光子学报, 2016, 45 (4): 0425002, 网络出版: 2016-05-11   

GaAs纳米线阵列太阳能电池的设计与优化

Design and Optimization of GaAs Nanowire Array Solar Cells
作者单位
中国传媒大学 理学院,北京 100024
摘要
为了得到纳米线阵列太阳能电池的最优转换效率,通过仿真计算对GaAs轴向pin结纳米线阵列进行了结构优化.首先利用三维有限时域差分法分析了GaAs纳米线阵列的光吸收特性,并对其直径、密度等结构参量进行优化,优化后的GaAs纳米线阵列的光吸收率可达87.4%.在此基础上,利用Sentaurus软件包中的电学仿真模块分析了电池的电学性能,并根据光生载流子在纳米线中的分布,对轴向pin结结构进行优化,最终优化过的太阳能电池功率转换效率可达到17.6%.分析结果表明,通过钝化处理以降低GaAs纳米线的表面复合速率,可显著提升电池的功率转换效率,而通过减小纳米线顶端高掺杂区域的体积,可减少载流子复合损耗,从而提高电池效率.该研究可为制作高性能的纳米线太阳能电池提供参考.
Abstract
For achieving an optimized efficiency of nanowire array based solar cells, a GaAs axial pin nanowire array solar cell was designed and analyzed through simulation. The optical absorptance of GaAs nanowire was calculated using three-dimensional finite difference time domain simulations. The structure parameters of the nanowire array, such as diameter and density, were optimized, and the optimized absorptance is 87.4%. Then the electrical performance of the solar cell was analyzed by Sentaurus Device electrical simulation module. At last, the structure of the axial pin structure was also optimized according to the optical generation profile, and the final conversion efficiency of the solar cell can reach 17.6% in the optimized structure. The results indicate that the performance of the solar cell can be significantly improved through surface passivation treatment, which can reduce the surface recombination velocity of GaAs nanowires. And through decreasing the volume of the highly doped top region of the nanowire, the carrier recombination can be reduced and thus the efficiency can be enhanced. The analysis can prove some guidance for fabricating high-performance nanowire solar cells.

刘开贤, 蔺吉虹, 史建华, 田少华. GaAs纳米线阵列太阳能电池的设计与优化[J]. 光子学报, 2016, 45(4): 0425002. LIU Kai-xian, LIN Ji-hong, SHI Jian-hua, TIAN Shao-hua. Design and Optimization of GaAs Nanowire Array Solar Cells[J]. ACTA PHOTONICA SINICA, 2016, 45(4): 0425002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!