红外与激光工程, 2016, 45 (4): 0425004, 网络出版: 2016-05-11   

利用介质超材料控制太赫兹波的振幅和相位

Simultaneous control of terahertz amplitude and phase with dielectric metamaterials
作者单位
1 天津大学 精密仪器与光电子工程学院 光电信息技术科学教育部重点实验室 天津大学太赫兹波研究中心, 天津 300072
2 中国科学院微电子研究所, 北京 100029
摘要
设计了基于介质高阻硅的超材料用于对太赫兹波的透射振幅和相位进行控制。这里组成超材料的基本结构单元为亚波长柱状硅, 相比于基于金属的超材料, 其损耗小, 效率也更高。太赫兹入射到不同尺寸和旋向的柱状硅时, 所透射的太赫兹波的振幅和相位也不同。通过设计不同空间位置处的柱状硅尺寸和旋向, 就可以实现任意的振幅和相位分布, 从而对透射波波前进行完全的控制。实验中, 利用这种硅质微结构设计了三种不同的奇异光栅, 其衍射级次和数目可任意控制。这种基于介质超材料的方法, 设计简单, 加工方便, 在制作太赫兹波段低损耗的功能器件方面有着广泛的应用前景。
Abstract
Dielectric metamaterials based on high-impedance silicon were designed for controlling the amplitude and phase of the terahertz waves. Here, the basic unit cells of the dielectric metamaterials are subwavelength silicon pillars, they have lower loss and thus have higher efficiency compared with the metal based metamaterials. As different silicon pillars with different geometric parameters and orientation angles will have different transmission amplitude and phase when the terahertz wave passes through them, nearly arbitrary spatial amplitude and phase distributions can be achieved by designing the geometric parameters and orientation angles of the silicon pillars at different positions, which allows to fully control the shape of the transmitted terahertz wavefront. In experiment, three different meta-gratings were designed using the silicon based structures in which the diffractive orders and their numbers can be arbitrarily controlled. Such dielectric metamaterials are very easy to design and fabricate, making them very promising in developing low-loss terahertz functional devices.

张学迁, 张慧芳, 田震, 谷建强, 欧阳春梅, 路鑫超, 韩家广, 张伟力. 利用介质超材料控制太赫兹波的振幅和相位[J]. 红外与激光工程, 2016, 45(4): 0425004. Zhang Xueqian, Zhang Huifang, Tian Zhen, Gu Jianqiang, Ouyang Chunmei, Lu Xinchao, Han Jiaguang, Zhang Weili. Simultaneous control of terahertz amplitude and phase with dielectric metamaterials[J]. Infrared and Laser Engineering, 2016, 45(4): 0425004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!