首页 > 论文 > 激光与光电子学进展 > 53卷 > 6期(pp:61408--1)

气流作用下激光熔穿金属板效应研究

Effect of Airflow on Metal Plate Melted Through by Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

建立了气流作用下激光辐照金属的数值模型,利用CFD软件模拟了不同气流速度、不同厚度金属锡板的激光辐照熔化烧蚀过程,并对比了实验结果。通过研究液态金属迁移机理及对流散热机理,分析了气流速度对不同厚度金属板的辐照效应的影响。研究结果表明,较厚金属板的辐照过程中会形成较深的熔坑,使得相同气流速度下熔化的液态金属较难移除,导致熔穿时间随气流速度增大而减小;较薄金属板的熔坑较浅,液态金属容易移除,由于移除的金属液滴混合在空气中增强了对流换热效果,因此熔穿时间随气流速度增大而增大。

Abstract

A numerical model of laser irradiating metal under airflow is established. The flame ablations irradiated by laser under different airflow velocity and thickness of tin plates are simulated by the CFD software and contrasted with experimental results. Laser irradiation on metal plates with different thickness affected by airflow velocity is analyzed based on the research on liquid metal removal and heat convection mechanisms. The results indicate that the melting-through time of thicker metal plate decreases with the increasing airflow velocity as deeper craters are formed in the irradiation process and the melted liquid metal is more difficult to remove at the same airflow velocity; however, the melting-through time of thinner metal plate increases with the increasing airflow velocity as the craters are shallower, the liquid metal is easier to remove, and the heat convection is enhanced by mixing of the removed metal drop with air.

投稿润色
补充资料

中图分类号:TN248.1

DOI:10.3788/lop53.061408

所属栏目:激光器与激光光学

基金项目:强激光与物质相互作用国家重点实验室基金(SKLLIM1301)

收稿日期:2015-12-23

修改稿日期:2016-01-23

网络出版日期:2016-05-21

作者单位    点击查看

彭国良:西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
韦成华:西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
杜太焦:西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
张相华:西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024

联系人作者:彭国良(pgl02@163.com)

备注:彭国良(1985—),男,硕士,助理研究员,主要从事激光辐照效应的数值模拟等方面的研究。

【1】Peng Guoliang, Yan Hui, Liu Feng, et al.. Oxidation effect for laser irradiating the metal [J]. Infrared and Laser Engineering, 2013(5): 1253-1257.
彭国良, 闫辉, 刘峰, 等. 金属氧化膜对激光辐照效应的影响[J]. 红外与激光工程, 2013(5): 1253-1257.

【2】Wei Chenghua, Wang Lijun, Liu Weiping, et al.. Thermal response of 45# steel coupling with multi-layer oxide film evolution by laser radiation[J]. Optics and Precision Engineering, 2014, 22(8): 2061-2066.
韦成华, 王立君, 刘卫平, 等. 基于多层氧化膜演化的45#钢激光辐照效应[J]. 光学 精密工程, 2014, 22(8): 2061-2066.

【3】Johnson R L, O′keefe J D. Laser burn through time reduction due to tangential airflow - an interpolation formula[J]. AIAA Journal, 1974, 12(8): 1106-1109.

【4】O′keefe J D, Johnson R L. Laser melt through time reduction due to aerodynamic melt removal[J]. AIAA Journal, 1976, 14(6): 776-780.

【5】Robin J E, Nordin P. Enhancement of cw laser melt-through of opaque solid materials by supersonic transverse gas flow[J]. Applied Physics Letters, 1975, 26(6): 289-292.

【6】Robin J E, Nordin P. Effects of gravitationally induced melt removal on cw laser melt-through of opaque solids[J]. Applied Physics Letters, 1975, 27(11): 593-595.

【7】Robin J E, Nordin P. Reduction of cw laser melt-through times in solid materials by transverse gas flow[J]. Journal of Applied Physics, 1975, 46(6): 2538-2543.

【8】Crane K C A, Garnsworthy R K, Mathias L E S. Ablation of materials subjected to laser radiation and high-speed gas flows[J]. Journal of Applied Physics, 1980, 51(11): 5954-5961.

【9】Steen W, Mazumder J. Laser material processing[M]. London: Springer Science & Business Media, 2010.

【10】Kwon H, Baek W K, Kim M S, et al.. Temperature-dependent absorptance of painted aluminum, stainless steel 304, and titanium for 1.07 μm and 10.6 μm laser beams[J]. Optics and Lasers in Engineering, 2012, 50(2): 114-121.

【11】Baek W K, Lee K C, An S I, et al.. Melt-through characteristics in continuous beam irradiation of flying metal samples in flow speeds up to 85 m/s[J]. Optics & Laser Technology, 2013, 45: 250-255.

【12】Du Qiu, Hang Xiaolin, Wang Mingdi, et al.. Mechanism and experimental study of laser milling on laser cladding parts[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101403.
杜秋, 杭小琳, 王明娣, 等. 激光铣削对激光熔覆成形件的整形机理和实验研究[J]. 激光与光电子学进展, 2015, 52(10): 101403.

【13】Liu Haiqing, Liu Xiubo, Meng Xiangjun, et al.. Study on γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS high-temperature self-lubricating wear resistant composite coating on Ti-6Al-4V by laser cladding[J]. Chinese J Lasers, 2014, 41(3): 0303005.
刘海青, 刘秀波, 孟祥军, 等. Ti-6Al-4V合金激光熔覆γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS高温自润滑耐磨复合涂层研究[J]. 中国激光, 2014, 41(3): 0303005.

【14】Zhang Dongyun, Wu Rui, Zhang Huifeng, et al.. Numerical simulation of temperature field evolution in the process of laser metal deposition[J]. Chinese J Lasers, 2015, 42(5): 0503006.
张冬云, 吴瑞, 张晖峰, 等. 激光金属熔覆成形过程中温度场演化的三维数值模拟[J]. 中国激光, 2015, 42(5): 0503006.

【15】Zhang Li, He Jia, Tan Fuli. Numerical simulation of metal plates under laser irradiation based on fluid-solid coupling[J]. High Power Laser and Particle Beams, 2011, 23(4): 866-870.
张黎, 贺佳, 谭福利. 激光加热金属板流固耦合数值模拟[J]. 强激光与粒子束, 2011, 23(4): 866-870.

【16】Yan Xiangfeng. Numerical calculation of the metal melting in the laser loading process[D]. Shenyang: Shenyang Aerospace University, 2013.
严向峰. 激光加载过程中金属熔化的数值计算[D]. 沈阳: 沈阳航空航天大学, 2013.

【17】Zhao Tiancong. A handbook for extractive metallurgy of nonferrous metals[M]. Beijing: Metallurgical Industry Press, 1999.
赵天从. 有色金属提取冶金手册[M]. 北京: 冶金工业出版社, 1999.

引用该论文

Peng Guoliang,Wei Chenghua,Du Taijiao,Zhang Xianghua. Effect of Airflow on Metal Plate Melted Through by Laser[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061408

彭国良,韦成华,杜太焦,张相华. 气流作用下激光熔穿金属板效应研究[J]. 激光与光电子学进展, 2016, 53(6): 061408

被引情况

【1】李新梦,江厚满,张天宇. 915 nm激光辐照下45#钢在3.8 μm处反射率变化. 激光与光电子学进展, 2017, 54(7): 71401--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF