首页 > 论文 > 光电工程 > 43卷 > 5期(pp:88-84)

基于小波变换的嵌入式超声内窥图像处理系统

Embedded Endoscopic Ultrasound Image Processing System Based on Wavelet Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

医学内窥超声成像设备在获取图像时受到换能器尺寸等多种因素的影响, 使得超声图像对比度较低和噪声较大, 无法为医疗诊断提供清晰的影像依据。为此科学家们提出了多种处理方法, 但这些方法多为成像后处理算法, 实时性较差, 无法满足内窥超声系统实时成像的要求 (25 f/s)。针对以上问题, 本文设计了基于提升式小波变换的嵌入式超声内镜实时图像处理系统, 利用超声内窥系统环扫成像特点以及 FPGA流水线概念, 对每条扫描线的回波信号进行小波去噪, 再经过 CORDIC算法、插值处理后得到二维超声图像。本文利用自行搭建超声内镜实验系统对鸡肉组织进行环扫成像, 实验表明该系统成像速度可达 25 f/s, 信噪比提高了 3.8 dB, 从而验证了系统的可行性。

Abstract

During acquiring images, the equipment is affected by the size of the transducer and other factors which make the images have low contrast and big noise, cannot provide clear imaging basis for medical diagnostic. Scientists have proposed a variety of methods. However, these methods are mostly after-imaging processing algorithms and having a poor real-time performance, unable to meet the real-time endoscopic ultrasound imaging requirements (25 frames/s). Therefore, this paper designs the embedded endoscopic ultrasound real-time image processing system based on lifting Wavelet Transform. And the system processes echo signals of each scan line with wavelet denoising, then obtains two-dimensional ultrasound images after CORDIC algorithm and interpolation processing using the imaging characteristics of circular scan and FPGA pipeline concept. Through building my own endoscopic ultrasound experimental system which makes the chicken tissue imaging use circular scan, the experiments show that the system imaging speed is up to 25 frames /s and SNR improves 3.8 dB, verifying the feasibility of the system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3969/j.issn.1003-501x.2016.05.015

所属栏目:生物与医用光学

基金项目:国家“十二五”科技支撑计划项目 (2012BAI19B02)

收稿日期:2015-06-24

修改稿日期:2015-09-02

网络出版日期:--

作者单位    点击查看

时一峰:天津大学光电信息技术教育部重点实验室, 天津 300072
白宝平:北京华科创智健康科技股份有限公司, 北京 100195
陈晓冬:天津大学光电信息技术教育部重点实验室, 天津 300072
汪毅:天津大学光电信息技术教育部重点实验室, 天津 300072
郁道银:天津大学光电信息技术教育部重点实验室, 天津 300072

联系人作者:时一峰(shiyifeng@tju.edu.cn)

备注:时一峰(1992-), 男(汉族), 辽宁葫芦岛人。硕士研究生, 主要研究工作是医学图像处理。

【1】李亚楠. 超声内镜数字成像系统[D].天津: 天津大学, 2013: 1-4.
LI Yanan. Ultrasonic endoscope digital imaging system[D]. Tianjin: Tianjin University, 2013: 1-4.

【2】耿洁, 李全禄, 李娜, 等. 医用超声内窥镜的研究现状与发展趋势[J].中国医学物理学杂志, 2010, 27(5): 2122-2124.
GENG Jie, LI Quanlu, LI Na, et al. Research and development trends of medical ultra- sonic endoscope[J]. Chinese Journal of Medical Physics, 2010, 27(5): 2122-2124.

【3】SANCHES J M, LAINE A F, SURI J S. Ultrasound Imaging: Advances and Applications[M]. Berlin: Springer, 2012: 49-50.

【4】张聚, 王陈, 程芸. 小波与双边滤波的医学超声图像去噪[J].中国图象图形学报, 2014, 19(1): 126-132.
ZHANG Ju, WANG Chen, CHENG Yun. Despeckling Algorithm for Medical Ultrasound Images Based on Wavelet and Bilateral Filter[J]. Journal of Image and Graphics, 2014, 19(1): 126-132.

【5】Lee J. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1980, 2(2): 165-168.

【6】Frost V S, Stiles J A, Shanmugan K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transactions Pattern Analysis and Machine Intelligence(S0162-8828), 1982, 4(2): 157-166.

【7】Balocco S, Gatta C, Pujol O, et al. SRBF: speckle reducing bilateral filtering[J]. Ultrasound in Medicine and Biology (S0301-5629), 2010, 36(8): 1353-1363.

【8】YU Yongjian, Acton Scott T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions Image Processing(S1057-7149), 2002, 11(11): 1260-1270.

【9】Aja-Fernndez S, Alberola-López C. On the estimation of the coefficient of variation for anisotropic diffusion speckle fltering[J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(9): 2694-2701.

【10】YU Jinhua, TAN Jinglu, WANG Yuanyuan. Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method[J]. Pattern Recognition(S0031-3203), 2010, 43(9): 3083-3092.

【11】Krissian K, Westin C, Kikinis R, et al. Oriented speckle reducing anisotropic diffusion[J]. IEEE Transactions Image Processing(S1057-7149), 2007, 16(5): 1412-1424.

【12】Coupé P, Hellier P, Kervrann C, et al. Nonlocal means-based speckle filtering for ultrasound Images[J]. IEEE Transactions on Image Processing(S1057-7149), 2009, 18(10): 2221-2229.

【13】Deledalle C, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch based weights[J]. IEEE Transactions on Image Processing(S1057-7149), 2009, 18(12): 2661-2672.

【14】GUO Y, WANG Y, HOU T. Speckle filtering of ultrasonic images using a modified non local-based algorithm[J]. Biomedical Signal Processing and Control(S1746-8094), 2011, 6: 129-138.

【15】Mohl B, Wahlberg M, Madsen P T. Ideal spatial adaptation via wavelet shrinkage[J]. The Journal of the Acoustical Society of America(S0016-8033), 2003, 114: 1143-1154.

【16】Andria G, Attivissimo F, Cavone G, et al. Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images[J]. Measurement(S0263-2241), 2012, 45: 1792-1800.

【17】冯开梅. 医学影像设备[M].北京: 人民卫生出版社, 2008: 20-30.
FENF Kaimei. Medical Imaging Equipment[M]. Beijing: People''s Medical Publishing House, 2008: 20-30.

【18】Volder J E. The CORDIC Trigonometric Computing Technique[J]. IRE Transactions on Electronics Computers(S0367-9950), 1959, 8(3): 330-334.

【19】Daubechies Ingrid, Swendens Wim. Factoring Wavelet Transforms into Lifting Steps[J]. Journal of Fourier Analysis and Applications(S1069-5869), 1998, 4(3): 247-269.

【20】David H Foos, Edward Muka, Richard M Slone. JPEG2000 compression of medical imagery[J]. Proceedings of SPIE(S0277-786X), 2002, 3980(12): 85-96.

【21】李秋妮, 晁爱农, 史德琴, 等. 一种新的小波半软阈值图像去噪[J].计算机工程与科学, 2014, 36(8): 1566-1570.
LI Qiuni, CHAO Ainong, SHI Deqin, et al. A novel image denoising method of wavelet semi-soft threshold[J]. Computer Engineering and Science, 2014, 36(8): 1566-1570.

【22】夏宇闻. Verilog数字系统设计教程[M].北京: 北京航空航天大学出版社, 2008: 149-154.
XIA Yuwen. Verilog Digital System Design[M]. Beijing: Beihang University Press, 2008: 149-154.

引用该论文

SHI Yifeng,BAI Baoping,CHEN Xiaodong,WANG Yi,YU Daoyin. Embedded Endoscopic Ultrasound Image Processing System Based on Wavelet Transform[J]. Opto-Electronic Engineering, 2016, 43(5): 88-84

时一峰,白宝平,陈晓冬,汪毅,郁道银. 基于小波变换的嵌入式超声内窥图像处理系统[J]. 光电工程, 2016, 43(5): 88-84

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF