首页 > 论文 > 激光与光电子学进展 > 53卷 > 7期(pp:70401--1)

气体拉曼光谱检测系统中热电制冷CCD研究

Study on Thermoelectrically Cooled CCD in Raman Spectrum Detection System for Gas Analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

拉曼光谱检测中常用的CCD对温度较为敏感,降温可以有效降低其暗电流噪声。基于此,设计了一套制冷系统,采用有限元分析软件ANSYS分别模拟散热模块的导热情况及真空室内低、中真空度下气体流动热交换情况;实验测量了低、中真空度范围内不同真空度下温度随制冷时间变化的特性曲线,以及真空室内充入氩气、氖气、氮气作为保护气体时温度随制冷时间变化的特性曲线。结果表明氮气效果较好,并非真空度越高制冷效果越好,这与热模拟结果相符。测量了CCD在不同温度下的暗电流噪声,结果显示CCD温度对暗电流噪声影响较大,制冷可以有效减小暗电流噪声,且暗电流噪声变化与温度变化呈类指数关系。

Abstract

The commonly used CCD in Raman spectroscopy is sensitive to temperature, and cooling can effectively reduce its dark current noise. A cooling system is designed, and the finite element analysis software ANSYS is used to simulate the heat conduction of the heat sink and the heat exchange of gas flow in the vacuum chamber. The temperature change with the cooling time is measured at different vacuum degrees and with different buffer gas including Ar, Ne, N2 and air. The experimental results show that better cooling effect can be realized when N2 is used as buffer gas, and higher vacuum degree does not guarantee better cooling effect, which is consistent with the thermal simulation result. The measured dark current noise of CCD at different temperatures shows that CCD temperature has strong impact on its dark current noise, cooling can reduce the noise effectively, and the noise varies with temperature exponentially.

投稿润色
补充资料

中图分类号:TN386.5

DOI:10.3788/lop53.070401

所属栏目:探测器

基金项目:国家重大科学仪器设备开发专项(2012YQ16000702)

收稿日期:2016-01-25

修改稿日期:2016-02-29

网络出版日期:2016-06-22

作者单位    点击查看

赵俊:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
左都罗:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
王新兵:华中科技大学武汉光电国家实验室, 湖北 武汉 430074

联系人作者:赵俊(525418495@qq.com)

备注:赵俊(1989—), 男, 硕士研究生, 主要从事热电制冷CCD相关技术方面的研究。

【1】Das R S, Agrawal Y K. Raman spectroscopy: Recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176.

【2】Tu Q, Chang C. Diagnostic applications of Raman spectroscopy[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8(5): 545-558.

【3】Zhao L Z, Chen W G, Wan F, et al.. Laser Raman spectroscopy applied in detecting dissolved gas in transformer oil[C]. 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2013: 1145-1148.

【4】Ingley R, Hutchinson I B, Edwards H G M, et al.. ExoMars Raman laser spectrometer breadboard: Detector design and performance[C]. SPIE, 2011, 8152: 815215.

【5】Hu Xiaohong, Zhou Jinchi. Application and progress of Raman spectroscopy[J]. Analytical Instrumentation, 2011(6): 1-4.
胡晓红, 周金池. 拉曼光谱的应用及其进展[J]. 分析仪器, 2011(6): 1-4.

【6】Han Xiaozhen, Guo Zhengye, Kang Yan, et al.. Application of Raman spectroscopy in certification of chicken-blood stones[J]. Acta Optica Sinica, 2015, 35(1): 0130003.
韩孝朕, 郭正也, 康燕, 等. 拉曼光谱在鸡血石鉴定中的应用[J]. 光学学报, 2015, 35(1): 0130003.

【7】Zuo D L, Xu Y Y, Wang X B, et al.. Studies on sensitive Raman gas detectors[C]. SPIE, 2013, 8718: 87180N.

【8】Li Zhe, Yu Anlan, Zuo Duluo, et al.. Analysis and correction of slit curvature in spectrograph with high NA[J]. Acta Optica Sinica, 2015, 35(6): 0630004.
李哲, 余安澜, 左都罗, 等. 大口径光谱系统狭缝弯曲的分析与矫正[J]. 光学学报, 2015, 35(6): 0630004.

【9】Li Bin, Tu Pin, Xu Yongyue, et al.. Narrow linewidth diode laser with grating external cavity in 405 nm band[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031404.
李斌, 涂嫔, 徐勇跃, 等. 405 nm波段光栅外腔窄线宽蓝紫光半导体激光器[J]. 激光与光电子学进展, 2015, 52(3): 031404.

【10】Zhu Huadong, Luo Qin, Zhou Li, et al.. Application prospect of natural gas component analysis using laser Raman spectroscopy[J]. Natural Gas Industry, 2013, 33(11): 110-114.
朱华东, 罗勤, 周理, 等. 激光拉曼光谱及其在天然气分析中的应用展望[J]. 天然气工业, 2013, 33(11): 110-114.

【11】Lei Yutang, Wang Qingyou, He Jiaming, et al.. Optoelectric detection technology[M]. Beijing: China Metrology Publishing House, 2007: 119-130.
雷玉堂, 王庆友, 何加铭, 等. 光电检测技术[M]. 北京: 中国计量出版社, 2007: 119-130.

【12】Zhang Dahai, Yao Dazhi, Liu Wei, et al.. System design of high-speed science-grade CCD camera[J]. Opto-Electronic Engineering, 2005, 32(11): 87-92.
张大海, 姚大志, 刘伟, 等. 高速科学CCD CAMERA系统设计[J]. 光电工程, 2005, 32(11): 87-92.

【13】Gan Y Q, Ge W, Qiao W D, et al.. Design and application of TEC controller using in CCD camera[C]. SPIE, 2011, 8196: 81961E.

【14】Wang Bing. The semiconductor cooled high speed USB3.0 camera[D]. Hangzhou: Zhejiang University, 2013: 24-31.
王兵. 半导体制冷USB3.0高速相机的研究[D]. 杭州: 浙江大学, 2013: 24-31.

【15】Gao Xinhui, Deng Zhongmin, Wang Jingtao. Three-dimensional nonlinear temperature field analysis of TEC structure[J]. Chinese Journal of Computational Mechanics, 2012, 29(1): 25-30.
高薪蕙, 邓忠民, 王静涛. TEC结构的三维非线性瞬态温度场分析[J]. 计算机力学学报, 2012, 29(1): 25-30.

【16】秦允豪. 普通物理学教程: 热学[M]. 北京: 高等教育出版社, 2004: 140-152.

【17】Jing Zhijun, Jiang Jingying, Zhang Fan, et al.. Design of CCD grating spectrometer with refrigeration and application in Fourier-domain OCT[J]. Science Technology and Engineering, 2006, 6(24): 3820-3822.
经志军, 蒋景英, 张帆, 等. 带制冷的CCD光栅光谱仪设计及其在频域OCT中的应用[J]. 科学技术与工程, 2006, 6(24): 3820-3822.

【18】Cheng Shubo, Zhang Huige, Liu Hao, et al.. Performance measurement of mechanical shutter and dark current for scientific-grade optical CCD[J]. Acta Optica Sinica, 2012, 32(2): 0204001.
程书博, 张惠鸽, 刘浩, 等. 科学级光学CCD暗电流及机械快门时间响应特性测试[J]. 光学学报, 2012, 32(2): 0204001.

【19】Widenhorn R, Blouke M M, Weber A, et al.. Temperature dependence of dark current in a CCD[C]. SPIE, 2002, 4669: 193-201.

引用该论文

Zhao Jun,Zuo Duluo,Wang Xinbing. Study on Thermoelectrically Cooled CCD in Raman Spectrum Detection System for Gas Analysis[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070401

赵俊,左都罗,王新兵. 气体拉曼光谱检测系统中热电制冷CCD研究[J]. 激光与光电子学进展, 2016, 53(7): 070401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF