首页 > 论文 > 中国激光 > 43卷 > 7期(pp:706004--1)

大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能

Performance of Multiple Input Multiple Output Free Space Optical Communication under Atmospheric Turbulence and Atmospheric Attenuation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了减小大气衰减效应和大气湍流效应对自由空间光通信的影响,采用了多输入多输出技术。假定自由空间光通信系统采用开关键控强度调制直接探测,信道独立同分布、无记忆平稳遍历并且具有加性高斯白噪声,在发射端和接收端都可以获取理想信道状态信息;建立了综合大气效应下多输入多输出信道模型和系统模型,推导了等增益分集合并下自由空间光通信系统的遍历容量和中断概率闭合表达式,仿真分析了各种天气条件和大气湍流对空间光通信链路的影响,结果显示随着发射孔径和接收孔径的数目增多,大气效应的影响逐渐减小,通信系统性能随之提高。从系统复杂度及性能提高程度综合考虑,选择2个发射孔径、2个接收孔径较为合适。

Abstract

Multiple input multiple output (MIMO) is used in order to decrease the effects of atmospheric attenuation and turbulence on free space optical communication (FSO). It is assumed that the intensity modulation direct detection (ID/DD) with on-off keying (OOK) is used in the FSO communication systems. The channel is memoryless, stationary ergodic, identically independent and distributed with additive white Gaussian noise (AWGN). The perfect channel state information (CSI) is available to both the transmitter and the receiver. Based on the hypothesis, the multiple input multiple output channel model and systems model are established under the integrated atmospheric effects. The closed form expressions of ergodic capacity and outage probability of FSO system with the equal gain diversity combined technique are derived. The influences of various weather conditions and turbulence strength on space optical communication link are analyzed. The results indicate that the performance of the communication system is increased and the atmospheric effect is decreased with the increase of the number of transmit aperture and receiving aperture. Considering the complexity and the increasing performance of the system, 2 transmission apertures and 2 receiving apertures are more suitable for FSO.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/cjl201643.0706004

所属栏目:光通信

基金项目:国家自然科学基金(61107039)

收稿日期:2016-02-12

修改稿日期:2016-03-24

网络出版日期:--

作者单位    点击查看

韩立强:燕山大学电气工程学院, 河北 秦皇岛 066004
游雅晖:燕山大学电气工程学院, 河北 秦皇岛 066004

联系人作者:韩立强(ysdxhlq@163.com)

备注:韩立强(1976—),男,博士,副教授,主要从事自由空间光通信方面的研究。

【1】Hu Qingsong, Huang Yuhua, Wang Junbo, et al.. Performance analysis of multi-hop free space optics over strong turbulence[J]. Acta Optica Sinica, 2013, 33(9): 0906004.
胡庆松, 黄玉划, 王俊波, 等. 强湍流下多跳自由空间光通信的性能分析[J]. 光学学报, 2013, 33(9): 0906004.

【2】Han Liqiang, Wang Qi, Shida Katsunori. Performance of free space optical communication over Gamma-Gamma atmosphere turbulence[J]. Infrared and Laser Engineering, 2011, 40(7): 1318-1322.
韩立强, 王祁, 信太克归. Gamma-Gamma大气湍流下自由空间光通信的性能[J]. 红外与激光工程, 2011, 40(7): 1318-1322.

【3】Han Liqiang, You Yahui. Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors[J]. Acta Optica Sinica, 2014, 34(11): 1106005.
韩立强, 游雅晖. 大气湍流及瞄准误差联合效应下自由空间光通信的性能[J]. 光学学报, 2014, 34(11): 1106005.

【4】al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

【5】Chatzidiamantis N D, Sandalidis H G, Karagiannidis G K, et al.. New results on turbulence modeling for free-space optical systems[C]. IEEE International Conference on Telecommunications(ICT), 2010: 487-492.

【6】Jurado-Navas A, Balsells J M G, Paris J F, et al.. General analytical expressions for the bit error rate of atmospheric optical communication systems[J]. Optics Letters, 2011, 36(20): 4095-4097.

【7】Kashani M A, Uysal M, Kavehrad M. A novel statistical model for turbulence-induced fading in free space optical systems[C]. International Conference on Transparent Optical Networks(ICTON), 2013: 1-5.

【8】Uysal M, Li J, Yu M. Error rate performance analysis of coded free-space optical links over Gamma-Gamma turbulence channels[J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1229-1233.

【9】Tsiftsis T A. Performance of heterodyne wireless optical communication systems over Gamma-Gamma atmospheric turbulence channels[J]. Electronics Letters, 2008, 44(5): 372-373.

【10】Popoola W O, Ghassemlooy Z, Ahmadi V. Performance of sub-carrier modulated free-space optical communication link in negative exponential atmospheric turbulence environment[J]. International Journal of Autonomous and Adaptive Communications Systems, 2008, 1(3): 342-355.

【11】Nistazakis H E, Tsiftsis T A, Tombras G S. Performance analysis of free-space optical communication systems over atmospheric turbulence channels[J]. IET Communications, 2009, 3(8): 1402-1409.

【12】Navidpour S M, Uysal M, Kavehrad M. BER performance of free space optical transmission with spatial diversity[J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2813-2819.

【13】Cvijetic N, Wilson S G, Brandt-Pearce M. Performance bounds for free space optical MIMO systems with APD receivers in atmospheric turbulence[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(3): 3-12.

【14】Belmonte A, Kahn J M. Capacity of coherent free-space optical links using diversity-combining techniques[J]. Optics Express, 2009, 17(15): 12601-12611.

【15】Tsiftsis T A, Sandalidis H G, Karagiannidis G K, et al.. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 951-957.

【16】Zhu X M, Kahn J M. Maximum likelihood spatial diversity reception on correlated turbulent free space optical channels[C]. IEEE Global Communication Conference, 2000, 2: 1237-1241.

【17】Popoola W O, Ghassemlooy Z, Allen J I H, et al.. Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel[J]. IET Optoelectronics, 2008, 2(1): 16-23.

【18】Kaur P, Jain V K, Kar S. Performance analysis of FSO array receivers in presence of atmospheric turbulence[J]. IEEE Photonics Technology Letters, 2014, 26(12): 1165-1168.

【19】Luong D A, Thang T C, Pham A T. Average capacity of MIMO/FSO systems with equal gain combining over log-normal channels[C]. Fifth International Conference on Ubiquitous and Future Networks(ICUFN 2013), 2013: 306-309.

【20】Pham A T. Average capacity of MIMO free-space optical Gamma-Gamma fading channel[C]. 2014 IEEE International Conference on Communications(ICC), 2014: 3354-3358.

【21】Chatzidiamantis N D, Karagiannidis G K. On the distribution of the sum of Gamma-Gamma variates and applications in RF and optical wireless communications[J]. IEEE Transactions on Communications, 2011, 59(5): 1298-1308.

【22】The Wolfram functions site. Meijer G function[EB/OL]. [2016-01-05] http://functions.wolfram.com.

引用该论文

Han Liqiang,You Yahui. Performance of Multiple Input Multiple Output Free Space Optical Communication under Atmospheric Turbulence and Atmospheric Attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004

韩立强,游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004

被引情况

【1】宋晓梅,宋 菲,宋 鹏,李云红. 紫外光空分复用自组织网络路由协议. 中国激光, 2017, 44(10): 1006005--1

【2】李晓燕,张 鹏,佟首峰. Gamma-Gamma大气湍流下零判决门限差分探测自由空间光通信系统误码率性能. 中国激光, 2017, 44(11): 1106001--1

【3】程知,何枫,张巳龙,靖旭,侯再红. 趋势项调制的小波-经验模态分解联合方法用于大气相干长度廓线去噪. 光学学报, 2017, 37(12): 1201002--1

【4】曹阳,张勋,彭小峰,任发韬. 空间光通信中基于多输入多输出的级联码方案研究. 光学学报, 2018, 38(1): 106003--1

【5】赵芳,张骁,赵建军,杨利斌. 基于无线光通信的舰船三维变形测量方法. 中国激光, 2018, 45(4): 404003--1

【6】孔英秀,柯熙政,杨媛. 激光器线宽对空间相干光通信链路传输误码率研究. 激光与光电子学进展, 2018, 55(4): 40603--1

【7】韩立强,江红兵. 一种混合认知RF和MIMO FSO系统的中断概率分析. 中国激光, 2018, 45(4): 406001--1

【8】李晓燕,张鹏,佟首峰. 大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析. 中国激光, 2018, 45(6): 606001--1

【9】王斌,马良,杨慧珍,龚成龙. 成像掩模探测器信号与波前相位平均梯度平方和线性关系验证. 中国激光, 2018, 45(6): 605001--1

【10】马兵斌,柯熙政,张颖. 相干光通信系统中光束的偏振控制及控制算法研究. 中国激光, 2019, 46(1): 106002--1

【11】张悦,王惠琴,曹明华,雷景丽,王道斌. 联合效应影响下脉冲位置调制的大气光多输入多输出系统的误码率. 激光与光电子学进展, 2019, 56(9): 90602--1

【12】曹明华,姚 宇,宋梨花,王惠琴. 沙尘信道下激光通信系统的性能分析. 发光学报, 2019, 40(5): 659-665

【13】张悦,王惠琴,曹明华,黄瑞. 无线光通信中的增强型光空间调制. 光学学报, 2020, 40(3): 306001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF