首页 > 论文 > 激光与光电子学进展 > 53卷 > 8期(pp:81002--1)

基于多项式确定性矩阵的SIFT医学图像配准算法

Medical Image Registration Algorithm Based on Polynomial Deterministic Matrix and SIFT Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

考虑到随机测量矩阵存在硬件上存在无法实现的缺陷,结合压缩感知的稀疏投影理论,提出了基于多项式确定性矩阵的尺度不变特征变换(SIFT)医学图像配准算法。通过增加方向梯度数提高特征向量的有效性,利用测量数为7的多项式确定性矩阵对关键点特征向量进行降维,用欧式距离作为特征向量匹配的相似性度量,kd数据结构避免穷举。实验结果表明,该算法和传统SIFT算法及几种改进的SIFT算法相比,配准性能有了显著提高,同时确定性矩阵有利于图像配准系统的硬件实现。

Abstract

Given that random measurement matrix has defect in hardware realization, a scale-invariant feature transform (SIFT) based on polynomial deterministic matrix algorithm is proposed combining with the sparse projection of compressive sensing theory. The effectiveness of feature vector is enhanced by increasing the numbers of orientation gradient. The dimension of SIFT feature vector is decreased by a polynomial deterministic matrix with the measurement numbers of 7. Accordingly, the Euclidean distance is introduced to compute the similarity and dissimilarity between feature vectors used for image registration, and kd data structure is used to avoid exhaustion. Experimental results show that the proposed algorithm has better performance than the traditional SIFT algorithm and some current modified SIFT algorithms. At the same time, the deterministic matrix is beneficial to hardware implementation of image registration system.

中国激光微信矩阵
补充资料

中图分类号:TP391.4

DOI:10.3788/lop53.081002

所属栏目:图像处理

基金项目:国家自然科学基金(11547212)

收稿日期:2016-03-04

修改稿日期:2016-04-27

网络出版日期:2016-07-28

作者单位    点击查看

杨飒:广东第二师范学院物理系, 广东 广州 510310
夏明华:中山大学信息科学与技术学院, 广东 广州 510310
郑志硕:广东第二师范学院物理系, 广东 广州 510310

联系人作者:杨飒(yangsa@gdei.edu.cn)

备注:杨飒(1970—),女,硕士,高级实验师,主要从事图像信息处理方面的研究。

【1】Lowe D G. Object recognition from local scale-invariant features[C]. Computer Vision, 1999. Proceedings of the Seventh IEEE International Conference on. IEEE, 1999, 2: 1150-1157.

【2】Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【3】Wei L F, Pan L, Lin L, et al. The retinal image registration based on scale invariant feature[C]. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on. IEEE, 2010, 2: 639-643.

【4】Paganelli C, Peroni M, Riboldi M. Scale invariant feature transform in adaptive radiation therapy: A tool for deformable image registration assessment and re-planning indication[J]. Physics in Medicine and Biology, 2013, 58(02): 287-299.

【5】Wang Jieyu, Wang Jiajun, Zhang Jingya. Non-rigid medical image registration based on improved optical flow method and scale-invariant feature transform[J]. Journal of Electronics & Information Technology, 2013, 35(5): 1222-1228.
王婕妤, 王加俊, 张静亚. 基于改进光流场和尺度不变特征变换的非刚性医学图像配准[J]. 电子与信息学报, 2013, 35(5): 1222-1228.

【6】Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

【7】Candès E J. Compressive sampling[C]. Proceedings of the International Congress of Mathematicians, 2006, 3: 1433-1452.

【8】Donoho D L. Compressed sensing[J]. IEEE Transations on Information Theory, 52(4): 1289-1306.

【9】Wang Pu, An Wei, Deng Xinpu, et al. Geometric correction method for oscillation distortion of remote sensing images using compressive sampling[J]. Acta Optica Sinica, 2015, 35(1): 0110004.
汪璞, 安玮, 邓新蒲, 等. 使用压缩感知的遥感图像振荡畸变几何校正方法[J]. 光学学报, 2015, 35(1): 0110004.

【10】Yang Chuping, Cai Wenxi, Weng Jiawen. Window-added sampling for improving sparsity of non-sparse representation of signals[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031002.
杨初平, 蔡汶曦, 翁嘉文. 加窗截取改善信号非稀疏表达的稀疏性[J]. 激光与光电子学进展, 2015, 52(3): 031002.

【11】Qiu W, Zhou J X, Zhao H Z, et al. Three-dimensional sparse turntable microwave imaging based on compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(2): 826-830.

【12】Yang Sa, Yang Chunling. Image registration algorithm based on sparse random projection and scale-invariant feature transform[J]. Acta Optica Sinica, 2014, 34(11): 1110001.
杨飒, 杨春玲. 基于压缩感知与尺度不变特征变换的图像配准算法[J]. 光学学报, 2014, 34(11): 1110001.

【13】Shi Guangming, Liu Danhua, Gao Dahua, et al. Advance in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
石光明, 刘丹华, 高大化, 等. 压缩感知理论及研究进展[J]. 电子学报, 2009, 37(5): 1070-1081.

【14】Haupt J, Bajwa W U, Raz G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.

【15】de Vore R A. Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity, 2007, 23(4): 918-925.

【16】Mahmoud H, Masulli F, Rovetta S. Feature-based medical image registration using a fuzzy clustering segmentation approach[C]. Computational Intelligence Methods for Bioinformatics and Biostatistics. 9th International Meeting, CIBB 2012: 7845-7857.

【17】Yang Sa, Zheng Zhishuo. Medical image registration algorithm based on sparse random projection and sift transform[J]. Chinese Journal of Quantum Electronics, 2015, 32(3): 283-289.
杨飒, 郑志硕. 基于稀疏随机投影的SIFT医学图像配准算法[J]. 量子电子学报, 2015, 32(3): 283-289.

【18】Evans A C. BrainWeb: Simulated brain database[DB/OL]. [2015-11-12]. http://brainweb.bic.mni.mcgill.ca/brainweb/.

引用该论文

Yang Sa,Xia Minghua,Zheng Zhihuo. Medical Image Registration Algorithm Based on Polynomial Deterministic Matrix and SIFT Transform[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081002

杨飒,夏明华,郑志硕. 基于多项式确定性矩阵的SIFT医学图像配准算法[J]. 激光与光电子学进展, 2016, 53(8): 081002

被引情况

【1】张鑫,靳雁霞,薛丹. SICA-SIFT和粒子群优化的图像匹配算法. 激光与光电子学进展, 2017, 54(9): 91002--1

【2】路绳方,刘震. 动车组运行故障动态图像比对分析方法. 激光与光电子学进展, 2017, 54(9): 91503--1

【3】路绳方. 复杂场景下动车底部螺栓丢失故障的自动检测. 激光与光电子学进展, 2017, 54(11): 111501--1

【4】陈波,孙天齐,刘爱新. 散斑噪声对基于特征点匹配的图像配准的影响. 激光与光电子学进展, 2017, 54(12): 121103--1

【5】朱炳斐,陈文建,李武森,张峻乾. 基于Fourier-Mellin变换的液晶显示屏显示缺陷检测. 激光与光电子学进展, 2017, 54(12): 121502--1

【6】陈波,孙天齐,刘爱新,杨旭. 分布式孔径综合成像系统旋转和放大率误差的校正. 激光与光电子学进展, 2018, 55(1): 11102--1

【7】赵婷,康海林,张正平. 结合区域分块的快速BRISK图像拼接算法. 激光与光电子学进展, 2018, 55(3): 31005--1

【8】王琳,刘强. 基于局部特征的多目标图像分割算法. 激光与光电子学进展, 2018, 55(6): 61002--1

【9】王飘,耿国华,张雨禾. 基于表面纹理特征定义的碎片拼接方法. 激光与光电子学进展, 2018, 55(8): 81012--1

【10】陈方杰,韩军,王祖武,张国强,成坚炼. 基于改进GMS和加权投影变换的图像配准算法. 激光与光电子学进展, 2018, 55(11): 111006--1

【11】郭阳,艾勇,陈晶. 基于双重尺度搜索遗传算法的尾气图像配准. 激光与光电子学进展, 2018, 55(12): 121101--1

【12】李佳,段平,姚永祥,程峰. 加速分割特征优化的图像配准方法. 激光与光电子学进展, 2019, 56(1): 11006--1

【13】毛一鸣,王建明,晏涛,陈丽芳,刘渊. 基于空间平面分割和投影变换的光场图像拼接算法. 激光与光电子学进展, 2019, 56(10): 101005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF