红外与激光工程, 2016, 45 (8): 0806002, 网络出版: 2016-08-29   

PCBN刀具激光超声复合切削硬质合金的磨损机理

PCBN tool wear mechanism in laser ultrasonically combined cutting cemented carbide
作者单位
河南理工大学 机械与动力工程学院,河南 焦作 454000
摘要
结合激光加热辅助切削和超声振动切削提出了激光超声复合切削加工工艺。采用PCBN刀具对YG10 硬质合金进行普通切削、超声振动切削、激光加热辅助切削和激光超声复合切削对比试验,采用超景深显微镜观测刀具磨损量及磨损形貌,通过扫描电子显微镜(SEM)对刀具磨损区域进行能谱分析,研究激光超声复合切削条件下刀具的磨损规律、磨损形态及磨损原因。研究结果表明: 与普通切削、超声振动切削及激光加热辅助切削相比,激光超声复合切削时刀具后刀面磨损量平均值分别降低57.5%、46%、41.3%,刀具使用寿命明显提高; 刀具磨损形态主要表现为前刀面磨损、后刀面磨损和崩刃; 激光超声复合切削硬质合金时粘接磨损、氧化磨损、相变磨损和微裂解磨损是引起PCBN刀具磨损的主要原因。
Abstract
Laser ultrasonically combined cutting was proposed based on ultrasonic vibration cutting with laser heating assisted cutting. A series of experiments were conducted in conventional cutting, ultrasonic vibration cutting, laser heating assisted cutting and laser ultrasonically combined cutting YG10 cemented carbide with PCBN tools. The tool wear characteristics and tool wear mechanism were observed by using digital microscope with super depth, the energy spectrum analysis was carried out in worn areas of tools by scanning electron microscopy (SEM). The experimental results indicate that the average flank wear of PCBN tool obtained by laser ultrasonically combined cutting is reduced by almost 57.5%, 46% and 41.3% respectively when compared with that by conventional cutting, ultrasonic vibration cutting and laser heating assisted cutting, therefore the tool life is obviously lengthened. The main wear types are crater wear, flank wear and tipping for PCBN tools in cutting YG10 cemented carbide. And the adhesion, oxidation, phase transformation and micro dissociation are the main reasons for the wear of PCBN tool in laser ultrasonically combined cutting YG10 cemented carbide.

张昌娟, 焦锋, 牛赢. PCBN刀具激光超声复合切削硬质合金的磨损机理[J]. 红外与激光工程, 2016, 45(8): 0806002. Zhang Changjuan, Jiao Feng, Niu Ying. PCBN tool wear mechanism in laser ultrasonically combined cutting cemented carbide[J]. Infrared and Laser Engineering, 2016, 45(8): 0806002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!