首页 > 论文 > 中国激光 > 43卷 > 9期(pp:901004--1)

亚波长抗反射光栅的设计

Design of Subwavelength Anti-Reflective Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种具有波长和偏振模式选择特性的GaAs材料的亚波长抗反射光栅,工作波长为976 nm。采用等效介质理论与薄膜理论对光栅进行初步设计,基于严格耦合波法依次对光栅占空比、脊高和周期进行优化确定,同时分析了各个参数对光栅透射率的影响。所设计的抗反射光栅分别具有99.99%(横电模)和99.86%(横磁模)的高透射率,并且在976 nm± 30 nm的范围内保持99%以上的高透射率,满足器件应用要求。最后研究了工艺误差导致的光栅非矩形形貌对光栅透射率以及偏振优势模式的影响。

Abstract

A subwavelength anti-reflective grating made from GaAs material is proposed, with optional wavelength and polarization mode and a working wavelength of 976 nm. On the basis of effective medium theory and membrane theory, the grating is initially designed. Parameters of duty cycle, ridge height and period of the grating are optimized and determined according to the rigorous coupled wave theory. Meanwhile, the influence of various parameters on the grating transmissivity is analyzed. The designed anti-reflective grating is of high transmissivity, 99.99% for TE mode and 99.86% for TM mode, respectively. In the range of 976 nm± 30 nm, the transmissivity is above 99% for both mode gratings, which meets the requirements of device application. The effect of non-rectangular shape of the grating caused by fabrication error on the transmissivity and dominant polarization mode is studied.

广告组6 - 调制器
补充资料

中图分类号:TN202

DOI:10.3788/cjl201643.0901004

所属栏目:激光器件与激光物理

基金项目:吉林省科技计划重点项目(201502040689X)

收稿日期:2016-04-28

修改稿日期:2016-05-16

网络出版日期:--

作者单位    点击查看

田锟:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
邹永刚:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
海一娜:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
王丹:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
白云峰:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
范杰:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
王海珠:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
马晓辉:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022

联系人作者:邹永刚(zouyg@cust.edu.cn)

备注:田锟(1991—),男,硕士研究生,主要从事光电子技术及应用方面的研究。

【1】Qi F, Ma Q Y, Wang Y F, et al. Large-aperture subwavelength grating coupler[J]. Applied Optics, 2016, 55(11): 2960-2966.

【2】Liu L, Deng Q Z, Zhou Z P. Subwavelength-grating-assisted broadband polarization-independent directional coupler[J]. Optics Letters, 2016, 41(7): 1648-1651.

【3】Wang Y, Shi W, Wang X, et al. Design of broadband subwavelength grating couplers with low back reflection[J]. Optics Letters, 2015, 40(20): 4647-4650.

【4】Zhang J J, Yang J B, Lu H Y, et al. Subwavelength TE/TM grating coupler based on silicon-on-insulator[J]. Infrared Physics & Technology, 2015, 71: 542-546.

【5】Li H Q, Cui B B, Liu Y, et al. Investigation of the chip to photodetector coupler with subwavelength grating on SOI[J]. Optics & Laser Technology, 2016, 76: 79-84.

【6】Li X F, Peng W, Zhao Y L, et al. A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index[J]. Chinese Physics B, 2015, 25(3): 037303.

【7】Du M D, Sun J Q. Performance enhancement of photodetector using defect subwavelength metallic grating[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2646-2649.

【8】Wang R, Li T, Shao X M, et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14471-14476.

【9】Xu L H, Zheng G G, Zhao D L, et al. Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(2): 955-958.

【10】Nikkhah H, Hall T J. Subwavelength grating waveguides for integrated photonics[J]. Applied Physics A, 2016, 122(4): 1-6.

【11】Tian H, Cui X, Du Y, et al. Broadband high reflectivity in subwavelength-grating slab waveguides[J]. Optics Express, 2015, 23(21): 27174-27179.

【12】Liang H M, Wang J Q, Wang X, et al. Surface plasmon interference lithography assisted by a Fabry-Perot cavity composed of subwavelength metal grating and thin metal film[J]. Chinese Physics Letters, 2015, 32(10): 51-54.

【13】Huo F, Li Y F, To S, et al. Optimal design of broadband antireflective subwavelength gratings for solar applications[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2626-2628.

【14】Gebski M, Dems M, Wasiak M, et al. Monolithic subwavelength high-index-contrast grating VCSEL[J]. IEEE Photonics Technology Letters, 2015, 27(8): 1953-1956.

【15】Yao D Y, Zhang J C, Liu Y H, et al. Small divergence substrate emitting quantum cascade laser by subwavelength metallic grating[J]. Optics Express, 2015, 23(9): 11462-11469.

【16】Takashima Y, Tanabe M, Haraguchi M, et al. Highly polarized emission from a GaN-based ultraviolet light-emitting diode using a Si-subwavelength grating on a SiO2 underlayer[J]. Optics Communication, 2016, 369(15): 38-43.

【17】Honma H, Takahashi K, Ishida M, et al. Continuous control surface-plasmon excitation wavelengths using nanomechanically stretched subwavelength grating[J]. Applied Physics Express, 2016, 9(2): 027201.

【18】Indumathi R S, Li Y, William F D, et al. Subwavelgnth grating based metal-oxide nano-hair structures for optical vortex generation[J]. Optics Express, 2015, 23(15): 19056-19065.

【19】Ma Youqiao, Zhou Jun, Sun Tietun, et al. Design of antireflection structure of photovoltaic cells with sub-wavelength grating based on EMT[J]. Acta Energiae Solaris Sinica, 2010, 31(10): 1353-1357.
马佑桥, 周骏, 孙铁囤, 等. 基于等效介质理论的光伏电池亚波长光栅减反结构设计[J]. 太阳能学报, 2010, 31(10): 1353-1357.

【20】Cao Zhaoliang. Design analysis and fabrication of subwavelength antireflective gratings[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003: 26-27.
曹召良. 亚波长抗反射光栅的设计分析与制作[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2003: 26-27.

【21】Rytov S M. Electromagetic properties of a finely stratified medium[J]. Soviet Physics JETP, 1956, 2(3): 466-475.

【22】Luo Chenchen. Research on the fabrication and properties of mirco/nano grating[D]. Shanghai: Shanghai Jiao Tong University, 2013: 26-27.
罗晨晨. 微纳光栅的制备及特性研究[D]. 上海: 上海交通大学, 2013: 26-27.

【23】Tang Jinfa, Zheng Quan. Applied thin film optics[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1984: 45-46.
唐晋发, 郑权. 应用薄膜光学[M]. 上海: 上海科学技术出版社, 1984: 45-46.

【24】Li Yunfang. Study on optical characteristics of subwavelength optical elements[D]. Changchun: Changchun University of Science and Technology, 2013: 6-9.
李云芳. 亚波长光学元件光学特性的研究[D]. 长春: 长春理工大学, 2013: 6-9.

【25】Moharam M G, Eric B G, Drew A P, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

【26】Gaylord T K, Moharam M G. Analysis and applications of optical diffraction by gratings[J]. Proceedings of the IEEE, 1985, 73(5): 894-937.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF