首页 > 论文 > 中国激光 > 43卷 > 9期(pp:906003--1)

MIMO-OFDM可见光通信系统的自适应信道估计

Adaptive Channel Estimation for MIMO-OFDM Visible Light Communication System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对LED通信系统中信道估计性能低的问题,提出了将正交频分复用(OFDM)系统与多输入多输出(MIMO)技术相结合的可见光通信系统及其基于信噪比的自适应信道估计算法。通过对最小二乘法(LS)、最小均方误差(MMSE)、离散傅里叶变换改进最小二乘法(LS-DFT)、离散傅里叶变换改进最小均方误差(MMSE-DFT)以及分布式压缩感知同步正交匹配追踪(DCS-SOMP)5种信道估计方法的研究,确定了信噪比的临界阈值。当信噪比低于临界阈值时,采用MMSE-DFT算法进行信道估计;当信噪比高于临界阈值时,选用DCS-SOMP算法进行数据重构并恢复信道脉冲响应矩阵。仿真结果表明,当信噪比为1 dB~40 dB时, 所提算法的均方误差得到有效降低(2.95 dB~15 dB),且LED通信系统的通信质量得到提高。

Abstract

To solve the low channel estimation performance of LED communication system, a visible light communication system which combines the orthogonal frequency division multiplexing (OFDM) system with the multiple input multiple output (MIMO) technology and its adaptive channel estimation based on signal-to-noise ratio (SNR) are proposed. The critical threshold of SNR is determined when the five algorithms, i.e., least squares (LS), minimum mean square error (MMSE), least squares-discrete Fourier transform (LS-DFT), minimum mean square error-discrete Fourier transform (MMSE-DFT) and distributed compressed sensing synchronous orthogonal matching pursuit (DCS-SOMP), are analyzed. When SNR is lower than the critical threshold, the MMSE-DFT algorithm is used for the channel estimation, and when SNR is higher than the critical threshold, the DCS-SOMP algorithm is applied to the data reconstruction and the recovery of channel impulse response matrix. Simulation results show that when SNR is 1 dB~40 dB the proposed algorithm can reduce the mean square error (MSE) from 2.95 dB to 15 dB, and improve the LED communication quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.7

DOI:10.3788/cjl201643.0906003

所属栏目:光通信

基金项目:国家自然科学基金(61071117)、重庆市研究生科研创新项目(CYS15172)、重庆市基础与前沿研究计划(cstc2015jcyjA40024)

收稿日期:2016-05-03

修改稿日期:2016-06-03

网络出版日期:--

作者单位    点击查看

陈勇:重庆邮电大学工业物联网与网络化控制教育部重点实验室, 重庆 400065
尹辉:重庆邮电大学工业物联网与网络化控制教育部重点实验室, 重庆 400065
刘焕淋:重庆邮电大学光纤通信技术重点实验室, 重庆 400065

联系人作者:刘焕淋(liuhl@cqupt.edu.cn)

备注:陈勇(1963—),男,博士,教授,主要从事可见光通信信号处理方面的研究。

【1】Zhou H, Mao S W, Agrawal P. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks[J]. Digital Communications and Networks, 2015, 1(3): 171-180.

【2】Chang C H, Li C Y, Le H H. A 100-Gb/s multiple-input multiple-output visible laser communication system[J]. Journal of Lightwave Technology, 2014, 32(24): 4121-4127.

【3】Liu H L,Dai H Y, Chen Y, et al. Conflict graph-based downlink resource allocation and scheduling for indoor visible light communications[J]. Journal of the Optical Society of Korea, 2016, 20(1): 36-41.

【4】Jose R, Hari K V S. Maximum likelihood algorithms for joint estimation of synchronization impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing system[J]. IET Communications, 2013, 7(15): 1567-1579.

【5】Jiang Y, Zhu J, Zou Y L. Secrecy outage analysis of multi-user multi-eavesdropper cellular networks in the face of cochannel interference[J]. Digital Communications and Networks, 2015, 1(1): 68-74.

【6】Tang Danying, Li Honglei, Chen Xiongbin, et al. Effects of detector′s nonlinearity on frequency response of visible light communication system[J]. Chinese J Lasers, 2014, 41(4): 0405002.
唐丹颖, 李洪磊, 陈雄斌, 等. 探测器非线性对可见光通信系统幅频响应的影响[J]. 中国激光, 2014, 41(4): 0405002.

【7】Zhang Jiankun, Yang Yu, Chen Hongda. Modulation scheme analysis of indoor visible light communications[J]. Chinese J Lasers, 2011, 38(4): 0405003.
张建昆, 杨宇, 陈弘达. 室内可见光通信调制方法分析[J]. 中国激光, 2011, 38(4): 0405003.

【8】Azhar A H, Tran T A, O′Brien D. A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications[J]. IEEE Photonics Technology Letters, 2013, 25(2): 171-174.

【9】Park S, Shim B, Choi J W. Iterative channel estimation using virtual pilot signals for MIMO-OFDM systems[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3032-3045.

【10】Masood M, Afify L H, Al-Naffouri T Y. Efficient coordinated recovery of sparse channels in massive MIMO[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 104-118.

【11】Ding W B, Yang F, Dai W, et al. Time-frequency joint sparse channel estimation for MIMO-OFDM systems[J]. IEEE Communications Letters, 2015, 19(1): 58-61.

【12】Pejoski S, Kafedziski S. Estimation of sparse time dispersive channels in pilot aided OFDM using atomic norm[J]. IEEE Wireless Communications Letters, 2015, 4(4): 397-400.

【13】Zhang T, Guo S X, Chen H P, et al. Enhancing the bit error rate of indoor visible light communication systems using adaptive channel estimation algorithm[J]. IET Communications, 2015, 9(4): 501-507.

【14】Kamali A, Sahaf M R A, Hosseini A M D, et al. A low complexity DFT-matrix based pilot allocation algorithm for sparse channel estimation in OFDM systems[J]. AEU - International Journal of Electronics and Communications, 2014, 68(2): 85-89.

【15】Xu P, Wang J Z, Wang J K, et al. Analysis and design of channel estimation in multicell multiuser MIMO OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(2): 610-620.

【16】He X Y, Song R F, Zhu W P. Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 2990-3004.

【17】Tsai P Y, Lo P C, Shih F J, et al. A 4×4 MIMO-OFDM baseband receiver with 160 MHz bandwidth for indoor gigabit wireless communications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(12): 2929-2939.

引用该论文

Chen Yong,Yin Hui,Liu Huanlin. Adaptive Channel Estimation for MIMO-OFDM Visible Light Communication System[J]. Chinese Journal of Lasers, 2016, 43(9): 0906003

陈勇,尹辉,刘焕淋. MIMO-OFDM可见光通信系统的自适应信道估计[J]. 中国激光, 2016, 43(9): 0906003

被引情况

【1】雷 兴,胡 强,李 俊,王 珂. 谐振式光纤陀螺克尔效应误差的抑制. 激光与光电子学进展, 2017, 54(10): 100606--1

【2】陈 勇,李逸超,刘焕淋. 基于可见光通信的时分复用组网下移动目标定位方法. 中国激光, 2017, 44(10): 1006003--1

【3】陈勇,沈奇翔,刘焕淋. 室内可见光通信中接收光功率均匀性优化方法. 中国激光, 2018, 45(5): 506003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF