红外, 2016, 37 (8): 7, 网络出版: 2016-09-12  

基于纳米压印的超材料近红外吸收器的制备研究

Study of Fabrication of Metamaterial Near-infrared Absorber Based on Nanoimprint Lithography
作者单位
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 上海理工大学,上海 200093
摘要
超材料吸收器的高吸收率源于表面金属颗粒与介质层之间产生的局域等离激元共振以及由金属颗粒-介质层-金属反射层构成的微腔所导致的共振吸收。其吸收特性与金属颗粒的尺寸、形貌和介质层的材料和厚度密切相关。设计优化了一个在近红外波段1.2 m处具有近完美吸收的超材料吸收器。以该设计为蓝图,利用纳米压印技术制备了一系列具有不同介质层厚度的器件,并利用红外反射谱定量研究了这些器件的吸收特性。实验结果证实,用纳米压印技术制备的超材料器件具有工艺可靠性好、加工精度高等优点。实验测得的吸收率变化趋势与理论预期相符,吸收率较高。
Abstract
The high absorptivity of metamaterial absorbers originates from the local surface plasmon resonance (LSPR) in the interface between metal nanoparticles and dielectric medium as well as the resonant absorption induced by the micro-cavity composed of a metal nanoparticle layer, a dielectric medium layer and a metal reflector layer. The absorbance of a metamaterial absorber is closely related to the size and shape of nanoparticles and the material and thickness of dielectric medium. A metamaterial absorber which has nearly perfect absorption at the wavelength of 1.2 m in the near infrared waveband is designed and optimized. Taking this design as a blueprint, a series of devices with different dielectric medium thicknesses are prepared by using the nanoimprint lithography (NIL). The absorption properties of these devices are studied quantitatively by using the reflection absorption spectroscopy. The experimental results show that the metamaterial devices prepared by NIL have the advantages of good process reliability and high machining precision. The absorption change trend measured in experiment is consistent with the theoretical expectation and the absorption is high.

姜袆袆, 张斌, 杜磊, 程纪伟, 唐伟伟, 陈刚, 郝加明, 王兴军. 基于纳米压印的超材料近红外吸收器的制备研究[J]. 红外, 2016, 37(8): 7. JIANG Yi-yi, ZHANG Bin, DU Lei, CHENG Ji-wei, TANG Wei-wei, CHENGang, HAO Jia-ming, WANG Xing-jun. Study of Fabrication of Metamaterial Near-infrared Absorber Based on Nanoimprint Lithography[J]. INFRARED, 2016, 37(8): 7.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!