首页 > 论文 > 强激光与粒子束 > 28卷 > 10期(pp:103002--1)

高电子迁移率晶体管放大器高功率微波损伤机理

ADDINNE.BibHigh Power microwave damage mechanism on high electron mobility transistor amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在TCAD半导体仿真环境中, 建立了0.25 μm栅长的AlGaAs/InGaAs高电子迁移率晶体管(HEMT)低噪声放大器与微波脉冲作用的仿真模型, 基于器件内部的电场强度、电流密度和温度分布的变化, 研究了1 GHz的微波从栅极和漏极注入的损伤机理。研究结果表明, 从栅极注入约40.1 dBm的微波时, HEMT内部峰值温度随着时间的变化振荡上升, 最终使得器件失效, 栅下靠源侧电流通道和强电场的同时存在使得该位置最容易损伤; 从漏极注入微波时, 注入功率的高低会使器件内部出现不同的响应过程, 注入功率存在一个临界值, 高于该值, 器件有可能在第一个周期内损伤, 损伤位置均在漏极附近。在1 GHz的微波作用下, 漏极注入比栅极注入更难损伤。

Abstract

The device model of AlGaAs/InGaAs high electron mobility transistor(HEMT) low noise amplifier with 0.25 μm gate length is established using semiconductor simulation tool and the damage mechanism of 1 GHz microwave injected from gate and drain on HEMT is studied based on variety of electric field, current density and lattice temperature in device. Simulated results show that when microwave with 40.1 dBm power level is injected from gate, the peak temperature of HEMT will rise with oscillation and achieve the failure level finally. The location beneath the gate close to source is most susceptible to be damaged due to the effect of high current density path and strong electric field. The device responds with different processes when microwave signal with different power level is injected from drain electrode. HEMT would be damaged in the first cycle if the injected power is higher than the threshold. The position near drain electrode is most susceptible to be damaged. Compared with gate injection, it’s more difficult to damage the device when 1 GHz microwave is injected from drain.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.11884/hplpb201628.151206

所属栏目:高功率微波

收稿日期:2015-11-24

修改稿日期:2016-03-04

网络出版日期:--

作者单位    点击查看

闫 涛:西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
李 平:西北核技术研究所, 高功率微波技术重点实验室, 西安 710024

联系人作者:闫涛(yantao@nint.ac.cn)

备注:闫 涛(1991—), 硕士研究生, 从事高功率微波技术研究。

【1】Radasky W A, Baum C E, Wik M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference(IEMI)[J]. IEEE Trans Electromagnetic Compatibility, 2004,46(3): 314.

【2】B?倞ckstr?倠m M G, L?倠vstrand K G. Susceptibility of electronic systems to high-power microwaves: summary of test experience[J]. IEEE Trans Electromagnetic Compatibility, 2004,46(3): 396-403.

【3】Kim K, Iliadis A A. Critical upsets of CMOS inverters in static operation due to high-power microwave interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007,49(4): 876-885.

【4】Chai Changchun, Ma Zhenyang, Ren Xingrong, et al. Hardening measures for bipolar transistors against microwave-induced damage[J]. Chinese Physics B, 2013,22(6): 68502.

【5】Kim K, Iliadis A A. Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2008,52(10): 1589-1593.

【6】Ren Xingrong, Chai Changchun, Ma Zhenyang, et al. Motion of current filaments in avalanching PIN diodes[J]. Journal of Semiconductors, 2013,34: 044004.

【7】赵振国, 马弘舸, 赵刚, 等. PIN限幅器微波脉冲热损伤温度特性[J]. 强激光与粒子束, 2013, 25(7): 1741-1746. (Zhao Zhenguo, Ma Hongge, Zhao Gang, et al, Characteristics of temperature during PIN limiter thermal damage caused by microwaves. High Power Laser and Particle Beams, 2013, 25(7): 1741-1746)

【8】范菊平, 张玲, 贾新章. 双极型晶体管高功率微波的损伤机理[J]. 强激光与粒子束, 2010, 22(6): 1319-1322. (Fan Juping, Zhang Ling, Jia Xinzhang. HPM damage mechanism on bipolar transistors. High Power Laser and Particle Beams, 2010, 22(6): 1319-1322)

【9】周怀安, 杜正伟, 龚克. 双极型晶体管损坏与强电磁脉冲注入位置的关系[J]. 强激光与粒子束, 2006, 18(4): 689-692. (Zhou Huaian, Du Zhengwei, Gong Ke. Damage of bipolar junction transistor under electromagnetic pulse injected from different electrode. High Power Laser and Particle Beams, 2006, 18(4): 689-692)

【10】陈曦, 杜正伟, 龚克. 外电路在电磁脉冲对双极型晶体管作用过程中的影响[J]. 强激光与粒子束, 2007,19(7): 1197-1202. (Chen Xi, Du Zhengwei, Gong Ke. Influence of circuit during injection of EMP into bipolar junction transistor. High Power Laser and Particle Beams, 2007, 19(7): 1197-1202)

【11】Moulthrop A A, Muha M S, Dybdal R B, et al. HPM damage thresholds of GaAs FETs and HEMTs [R]. TR-0090(5925-02)-1, 1992.

【12】Zhang Cunbo, Wang Honggang, Zhang Jiande, et al. Experiment and simulation of the nonlinear and transient responses of GaAs PHEMT injected with microwave pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2015,57(5): 1132-1138.

【13】张存波, 王弘刚, 张建德. 高电子迁移率晶体管微波损伤仿真与实验研究[J]. 强激光与粒子束, 2014,26: 063014. (Zhang Cunbo, Wang Honggang, Zhang Jie. Simulation and experiment research on high electron mobility transistor microwave damage. High Power Laser and Particle Beams, 2014, 26: 063014)

【14】Yu Xinhai, Chai Changchun, Liu Yang, et al. Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor[J]. Chinese Physics B, 2015,24: 048502.

【15】Synopsys Inc. Sentaurus device user guide[M]. California: Synopsys Inc., 2013.

【16】范菊平. 典型半导体器件的高功率微波效应研究[D]. 西安: 西安电子科技大学, 2014. (Fan Juping. Study on the high power effects on typical semiconductor devices. Xi’an: Xidian University, 2014)

引用该论文

Yan Tao,Li Ping. ADDINNE.BibHigh Power microwave damage mechanism on high electron mobility transistor amplifier[J]. High Power Laser and Particle Beams, 2016, 28(10): 103002

闫 涛,李 平. 高电子迁移率晶体管放大器高功率微波损伤机理[J]. 强激光与粒子束, 2016, 28(10): 103002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF