首页 > 论文 > 光学学报 > 36卷 > 10期(pp:1006002--1)

低损耗硫系玻璃光纤的挤压制备及其性能研究

Fabrication and Properties of Low-Loss Chalcogenide Optical Fiber Based on the Extrusion Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用动态蒸馏提纯技术,配合优化的均化熔融和低温焠冷法技术,制备了高纯度的As40S60和As38S62硫系玻璃;通过高效挤压法制备出芯包结构的硫系光纤预制棒;在聚合物——聚醚砜树脂(PES)的保护下拉制出比例精确、离心率接近于0且损耗低的As40S60/As38S62芯包结构的硫系玻璃光纤。挤压过程可基本消除芯包界面的缺陷,从根本上降低了光纤的制备损耗。测试数据表明:经过有效提纯后,As40S60玻璃的红外透射率明显提高,绝大多数杂质吸收峰被消除。对芯包结构光纤输入端涂覆Ga层后,通过截断法进行了损耗测试,该光纤的传输背景损耗维持在0.2 dB/m,在4.8 μm处获得约为0.13 dB/m的最低损耗。

Abstract

A specialized dynamic distillation and purification process is used and cooperated with the optimized homogenized melt and the low-temperature quenching techniques to obtain high purity As40S60 and As38S62 glass. Then an efficient extrusion method is applied to the preparation of a core-cladding chalcogenide optical fiber preform. After that, under the protection of the polymer, which is polyethersulfone (PES), the preform is drawn into the As40S60/As38S62 core-cladding structure chalcogenide optical fiber with precise proportion, eccentricity closing to zero and low loss. After the high pressure extrusion process, the defects in the core-cladding interface are nearly eliminated, and thus the fiber loss is reduced effectively. The experimental results show that the infrared transmittance of As40S60 glass is obviously improved after effective purification and most impurity absorption bands in the spectra disappear. After the surface of fiber input ends is coated the Ga layer, the standard cut-back technique is adopted to measure the attenuation of this As40S60/As38S62 fiber. The transmitting background loss is around 0.2 dB/m, and the minimum loss is about 0.13 dB/m at 4.8 μm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TQ171.77

DOI:10.3788/aos201636.1006002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61377099,61177087,61307060)、浙江省重中之重学科开放基金(xkxl1508,xkxl1318)、教育部新世纪优秀人才(NCET-10-0976)、浙江省151人才第三层次、宁波大学王宽诚幸福基金、宁波大学优秀学位论文培育基金(PY2012015)

收稿日期:2016-04-28

修改稿日期:2016-05-26

网络出版日期:--

作者单位    点击查看

刘硕:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
唐俊州:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
刘自军:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
江岭:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
吴波:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
密楠:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
王训四:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
赵浙明:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
聂秋华:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
戴世勋:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
潘章豪:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211

联系人作者:刘硕(newave@vip.qq.com)

备注:刘硕(1991—),男,硕士研究生,主要从事硫系玻璃、红外光纤方面的研究。

【1】Smektala F, Quemard C, Leneindre L, et al. Chalcogenide glasses with large non-linear refractive indices[J]. Journal of Non-Crystalline Solids, 1998, 239(1-3): 139-142.

【2】Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.

【3】Houizot P, Boussard-Plédel C, Faber A J, et al. Infrared single mode chalcogenide glass fiber for space[J]. Optics Express, 2007, 15(19): 12529-12538.

【4】Gopal V, Harrington J A, Goren A, et al. Coherent hollow-core waveguide bundles for infrared imaging[J]. Optical Engineering, 2004, 43(5): 1195-1199.

【5】Suto H. Chalcogenide fiber bundle for 3D spectroscopy[J]. Infrared Physics & Technology, 1997, 38(2): 93-99.

【6】Bernier M, Fortin V, Caron N, et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 2013, 38(2): 127-129.

【7】Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7): 1313-1319.

【8】Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Optics Express, 2003, 11(7): 818-823.

【9】Monro T M, Warren-Smith S, Schartner E P, et al. Sensing with suspended-core optical fibers[J]. Optical Fiber Technology, 2010, 16(6): 343-356.

【10】Wang Cui, Dai Shixun, Zhang Peiqing, et al. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.
汪翠, 戴世勋, 张培晴, 等. 基于硫系玻璃光纤的红外超连续谱的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030001.

【11】Troles J, Shiryaev V, Churbanov M, et al. GeSe4 glass fibres with low optical losses in the mid-IR[J]. Optical Materials, 2009, 32(1): 212-215.

【12】Churbanov M F, Snopatin G E, Shiryaev V S, et al. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics[J]. Journal of Non-Crystalline Solids, 2011, 357(11-13): 2352-2357.

【13】Smektala F, Le Foulgoc K, Le Neindre L, et al. TeX-glass infrared optical fibers delivering medium power from a CO2 laser[J]. Optical Materials, 1999, 13(2): 271-276.

【14】Mossadegh R, Sanghera J S, Schaafsma D, et al. Fabrication of single-mode chalcogenide optical fiber[J]. Journal of Lightwave Technology, 1998, 16(2): 214-217.

【15】Tao G, Shabahang S, Banaei E H, et al. Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers[J]. Optics Letters, 2012, 37(13): 2751-2753.

【16】Lee E T Y, Taylor E R M. Two-die assembly for the extrusion of glasses with dissimilar thermal properties for fibre optic preforms[J]. Journal of Materials Processing Technology, 2007, 184(1-3): 325-329.

【17】Savage S D, Miller C A, Furniss D, et al. Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers[J]. Journal of Non-Crystalline Solids, 2008, 354(29): 3418-3427.

【18】Liao M, Chaudhari C, Qin G, et al. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Optics Express, 2009, 17(24): 21608-21614.

【19】Zhu Minming, Wang Xunsi, Xu Huijuan, et al. Novel Ge-Ga-Te-KBr far-infrared-transmitting chalcogenide glasses system[J]. Acta Photonica Sinica, 2014, 43(6): 0616001.
朱敏鸣, 王训四, 徐会娟, 等. 新型远红外Ge-Ga-Te-KBr硫系玻璃性能研究[J]. 光子学报, 2014, 43(6): 0616001.

【20】Zhai Chengcheng, Zhang Bin, Qi Sisheng, et al. Fabrication and properties of flexible chalcogenide fiber image bundles[J]. Acta Optica Sinica, 2015, 35(8): 0806005.
翟诚诚, 张斌, 祁思胜, 等. 柔性硫系玻璃光纤传像束的制备及性能研究[J]. 光学学报, 2015, 35(8): 0806005.

【21】Lafond C, Couillard J F, Delarosbil J L, et al. Recent improvements on mid-IR chalcogenide optical fibers[C]. Proceedings of SPIE, Infrared Technology and Applications, 2014, 9070: 90701C.

【22】Katsuyama T, Satoh S, Matsumura H. Scattering loss characteristics of selenide-based chalcogenide glass optical fibers[J]. Journal of Applied Physics, 1992, 71(9): 4132-4135.

【23】Zhu Qingde, Wang Xunsi, Zhang Peiqing, et al. Fabrication and optical properties of chalcogenide As2S3 suspended-core fiber[J]. Acta Optica Sinica, 2015, 35(12): 1206004.
祝清德, 王训四, 张培晴, 等. 硫系As2S3悬吊芯光纤制备及其光谱性能研究[J]. 光学学报, 2015, 35(12): 1206004.

【24】Toupin P, Brilland L, Renversez G, et al. All-solid all-chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(12): 14643-14648.

【25】Bernier M, Asatryan K, Vallée R, et al. Second-order Bragg gratings in single-mode chalcogenide fibres[J]. Quantum Electronics, 2011, 41(5): 465-468.

引用该论文

Liu Shuo,Tang Junzhou,Liu Zijun,Jiang Ling,Wu Bo,Mi Nan,Wang Xunsi,Zhao Zheming,Nie Qiuhua,Dai Shixun,Pan Zhanghao. Fabrication and Properties of Low-Loss Chalcogenide Optical Fiber Based on the Extrusion Method[J]. Acta Optica Sinica, 2016, 36(10): 1006002

刘硕,唐俊州,刘自军,江岭,吴波,密楠,王训四,赵浙明,聂秋华,戴世勋,潘章豪. 低损耗硫系玻璃光纤的挤压制备及其性能研究[J]. 光学学报, 2016, 36(10): 1006002

被引情况

【1】王形锋,杨建峰,闫兴涛,陈国庆,许彦涛. 柔性硫系玻璃红外光纤传像束的制备与性能测试. 光学 精密工程, 2017, 25(12): 3137-3144

【2】薛祖钢,陈朋,田优梅,潘章豪,赵浙明,王训四,张培晴,戴世勋,聂秋华. 单模As-Se红外玻璃光纤的制备及其性能研究. 中国激光, 2018, 45(7): 706001--1

【3】于秋爽,张潇予,张志萍. 硫系玻璃三阶光学非线性的研究进展. 激光与光电子学进展, 2018, 55(8): 80003--1

【4】郭海涛,崔健,许彦涛,肖旭升. 低损耗硫系红外光纤制备及其应用研究进展. 激光与光电子学进展, 2019, 56(17): 170606--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF