光学 精密工程, 2016, 24 (8): 1827, 网络出版: 2016-10-19   

∝型平坦展宽频谱可调全光时延线

∝-type tunable all-optical delay line on flat broadened spectrum
作者单位
北京交通大学 全光网络与现代通信网教育部重点实验室, 北京 100044
摘要
根据全光网交换和高速时分复用技术对时延调节的需求, 提出一种新的基于光纤非线性效应的∝型全光再生可调时延线。该时延线由小段高非线性光纤、色散补偿光纤、光纤光栅滤波器和光纤放大器等构成; 利用自相位调制、小量群速度色散效应、以及光波分裂效应获得携带近似线性时延的平坦化展宽光谱, 并在波长可调谐光纤光栅的配合下实现时延控制, 同时具有对工作波长进行适当变换的功能。单皮秒脉冲演变数值分析显示其在10 nm的波长范围内的调节量可达300 ps以上, 在40 Gbps脉冲序列仿真传输实验中Q值可达23.6。仿真实验结果表明: 设计的时延线在保证输出脉冲质量仍然良好(比特误差率(BER)10-12)的情况下获得了较大的时延调节量, 能满足全光网和高速时分复用系统的需求。
Abstract
According to the requirements of all optical networks and high speed optical time division multiplex systems for the time delay adjustment, a novel tunable ∝-type delay line is proposed based on the optical fiber nonlinear effect. The delay line is consist of some all-fiber-type devices, such as special optical fibers, optical fiber gratings, and optical fiber amplifiers. On the self-phase modulation, group-velocity dispersion effect and the light splitting effect, the delay line obtains the flat broadened spectrum with an approximate linear time delay and implements the time delay control with the help of a tunable optical fiber grating. Moreover, it converts the operation wavelength in a certain range under the control. The numerical evolution results of single picosecond pulse indicate that the delay has been up to 300 ps in the wavelength range of 10 nm, and the maximum output Q value up to 23.6 in one 40 Gbps at the simulation experiment system. These experiment results show that the all-optical delay line gets better time delay properties under maintaining a good pulse output(Bit Error Ratio (BER)10-12) and satisfies the requirements of all optical networks and high speed optical time division multiplex systems.

曹继红, 陈伟. ∝型平坦展宽频谱可调全光时延线[J]. 光学 精密工程, 2016, 24(8): 1827. CAO Ji-hong, CHEN Wei. ∝-type tunable all-optical delay line on flat broadened spectrum[J]. Optics and Precision Engineering, 2016, 24(8): 1827.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!