首页 > 论文 > Photonics Research > 4卷 > 6期(pp:272-276)

Low cross-talk, deep subwavelength plasmonic metal/insulator/metal waveguide intersections with broadband tunability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We suggest a low cross-talk plasmonic cross-connector based on a metal/insulator/metal cavity and waveguides. We separately investigate the isolated cavity mode, the waveguide mode, and the combination of cavity and waveguide modes using a finite-different time-domain method. Due to resonant tunneling and the cutoff frequency of the odd waveguide mode, our proposed structure achieves a high throughput transmission ratio and eliminates cross-talk. Furthermore, the proposed structure has a broadband tunability of 587 nm, which can be achieved by modulating the cavity air gap thickness. This structure enables the miniaturization of photonic integrated circuits and sensing applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.4.000272

基金项目:National Research Foundation of Korea (NRF) (NRF-2015R1A2A1A15055998, NRF-2013M3C1A3065051, NRF-2016R1C1B2007007).

收稿日期:2016-07-31

录用日期:2016-09-28

网络出版日期:--

作者单位    点击查看

Tae-Woo Lee:Department of Physics, Chung-Ang University, Seoul 06974, South Korea
Da Eun Lee:Department of Physics, Chung-Ang University, Seoul 06974, South Korea
Young Jin Lee:Department of Physics, Chung-Ang University, Seoul 06974, South Korea
Soon-Hong Kwon:Department of Physics, Chung-Ang University, Seoul 06974, South Korea

联系人作者:Soon-Hong Kwon(soonhong.kwon@gmail.com)

【1】D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).

【2】G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

【3】N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).

【4】N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).

【5】D. E. Lee, T.-W. Lee, and S.-H. Kwon, “Spatial mapping of refractive index based on a plasmonic tapered channel waveguide,” Opt. Express 23, 5907–5914 (2015).

【6】K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A.Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).

【7】L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).

【8】V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28, 1596–1602 (2011).

【9】R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).

【10】J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).

【11】Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinctionratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).

【12】T.-W. Lee, D. E. Lee, and S.-H. Kwon, “Dual-function metal-insulator-metal plasmonic optical filter,” IEEE Photon. J. 7, 4800108 (2015).

【13】S. Xiao and N. A. Mortensen, “Resonant-tunneling-assisted crossing for subwavelength plasmonic slot waveguides,” Opt. Express 16, 14997–15005 (2008).

【14】S.-H. Kwon, “Plasmonic ruler with angstrom distance resolution based on double metal blocks,” IEEE Photon. Technol. Lett. 25, 1619–1622 (2013).

【15】J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19, 11892–13898 (2011).

【16】S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998).

【17】S.-H. Kwon, M. Kamp, A. Forchel, M.-K. Seo, and Y.-H. Lee, “Elimination of cross-talk in waveguide intersections of triangular lattice photonic crystals,” Opt. Express 16, 11399–11404 (2008).

【18】W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32, 2801–2803 (2007).

【19】A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, and G. Veronis, “Plasmonic coaxial waveguide-cavity devices,” Opt. Express 23, 20549–20562 (2015).

【20】P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

【21】Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008).

引用该论文

Tae-Woo Lee, Da Eun Lee, Young Jin Lee, and Soon-Hong Kwon, "Low cross-talk, deep subwavelength plasmonic metal/insulator/metal waveguide intersections with broadband tunability," Photonics Research 4(6), 272-276 (2016)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF