首页 > 论文 > 中国激光 > 44卷 > 1期(pp:102004--1)

飞秒激光制备微光学元件及其应用

Application of Micro-Optical Components Fabricated with Femtosecond Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来, 微光学元件的制备与应用受到人们的广泛关注。微光学元件体积小、重量轻及制造成本低, 并且易于与微机电系统相集成, 能够实现普通光学元件难以实现的功能, 在光纤通信、信息处理、航空航天、生物医学、激光技术、光计算等领域, 突显出重要的应用价值。飞秒激光因其超短的脉冲宽度和超高的瞬时功率, 能够实现超高精度的微纳加工, 轻松突破衍射极限。飞秒激光加工技术对材料没有选择性, 加工过程也非常灵活, 可以进行任意复杂结构的加工, 丰富了微光学元件的制备种类。飞秒激光还能在现有结构或系统上进行集成加工, 极大扩展了微光学元件的应用。简要概述了微光学元件的优点及一些常用的制备方法, 同时对飞秒激光加工技术进行了简单概括, 对近年来飞秒激光制备各种微光学元件的实验和应用研究进行了综述, 最后对微光学元件未来的研究方向进行了预测和展望。

Abstract

Fabrication and application of micro-optical components are attracting broad attention in recent years. Micro-optical components have important applications in the fields of optical fiber communication, information, aerospace, biomedicine, laser technology, and optical computing, because they can achieve function that the ordinary optical components are hard to realize for their small size, light weight, low cost and ease to integrate with micro-electromechanical systems. Femtosecond laser can achieve micro/nano fabrication with ultra-high precision due to their ultrashort pulse width and ultrahigh pick power, which breaks the diffraction limit easily. Femtosecond laser can process almost any materials flexibly with arbitrary complex structures, which enriches the fabrication of micro-optical components. Further, the femtosecond laser processing can be carried out on the existing structure or system, which greatly expands the application of micro-optical components. A brief overview of the advantage and common fabrication methods of micro-optical components is given and the femtosecond laser processing technology briefly is summarized. Then, the experimental and applied research of micro-optical components fabricated with femtosecond laser are reviewed. Finally, some prospects and forecasts about the research of micro-optical components are given.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/cjl201744.0102004

所属栏目:“超快激光加工与微纳制造”专题

收稿日期:2016-09-05

修改稿日期:2016-10-12

网络出版日期:--

作者单位    点击查看

曹小文:吉林大学机械科学与工程学院, 吉林 长春 130025
张雷:吉林大学机械科学与工程学院, 吉林 长春 130025
于永森:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
陈岐岱:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012

联系人作者:曹小文(xw2015@outlook.com)

备注:曹小文(1990-), 男, 博士研究生, 主要从事飞秒激光加工方面的研究。

【1】Revzin A, Russell R J, Yadavalli V K, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography[J]. Langmuir, 2001, 17(18): 5440-5447.

【2】Cox J A. Application of diffractive optics to infrared imagers[C]. SPIE, 1995, 2550: 304-312.

【3】Pease R F W. Electron beam lithography[J]. Contemporary Physics, 1981, 22(3): 265-290.

【4】Vieu C, Carcenac F, Pepin A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000,164(1): 111-117.

【5】Lin X F, Chen Q D, Niu L G, et al. Mask-free production of integratable monolithic micro logarithmic axicon lenses[J]. Journal of Lightwave Technology, 2010, 28(8): 1256-1260.

【6】Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

【7】Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Reviews, 2008, 2(1-2): 100-111.

【8】Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl Phys Lett, 2002, 80(2): 312-314.

【9】Tan D, Li Y, Qi F, et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Appl Phys Lett, 2007, 90(7): 071106.

【10】Gan Z, Cao Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

【11】Clark-MXR, Inc. Matching with ultrafast laser pulse[EB/OL]. [2016-09-01].http://www.cmxr.com/Education/Short.html.

【12】Joglekar A P, Liu H H, Meyhfer E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5856-5861.

【13】Cheng Y, Tsai H L, Sugioka K, et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Appl Phys A, 2006, 85(1): 11-14.

【14】Qiao L, He F, Wang C, et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining[J]. Appl Phys A, 2010, 102(1): 179-183.

【15】Qiao L, He F, Wang C, et al. Fabrication of a micro-optical lens using femtosecond laser 3D micromachining for two-photon imaging of bio-tissues[J]. Opt Commun, 2011, 284(12): 2988-2991.

【16】Zheng C, Hu A M, Kihm K D, et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a pmma substrate for super-wide angle imaging[J]. Small, 2015, 11(25): 3007-3016.

【17】Antipov S, Baryshev S V, Butler J E, et al. Single-crystal diamond refractive lens for focusing X-Rays in two dimensions[J]. Journal of Synchrotron Radiation, 2016, 23(1): 163-168.

【18】Xu J J, Yao W G, Tian Z N, et al. High curvature concave-convex microlens[J]. IEEE Photonics Technol Lett, 2015, 27(23): 2465-2468.

【19】Lu D X, Zhang Y L, Han D D, et al. Solvent-tunable pdms microlens fabricated by femtosecond laser direct writing[J]. J Mater Chem C, 2015, 3(8): 1751-1756.

【20】Karp J H, Tremblay E J, Ford J E. Planar micro-optic solar concentrator[J]. Opt Express, 2010, 18(2): 1122-1133.

【21】Wu D, Wang J N, Niu L G, et al. Bioinspired fabrication of high-quality 3d artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2014, 2(8): 751-758.

【22】Chen F, Liu H, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt Express, 2010, 18(19): 20334-20343.

【23】Qu P, Chen F, Liu H, et al. A simple route to fabricate artificial compound eye structures[J]. Opt Express, 2012, 20(5): 5775-5782.

【24】Bian H, Yang Q, Chen F, et al. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process[J]. Materials Science and Engineering: C, 2013, 33(5): 2795-2799.

【25】Deng Z, Yang Q, Chen F, et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technol Lett, 2014, 26(20): 2086-2089.

【26】Meng X, Chen F, Yang Q, et al. Simple fabrication of closed-packed ir microlens arrays on silicon by femtosecond laser wet etching[J]. Appl Phys A, 2015, 121(1): 157-162.

【27】Hu Y, Chen Y, Ma J, et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Appl Phys Lett, 2013, 103(14): 141112.

【28】Tian Z N, Yao W G, Xu J J, et al. Focal varying microlens array[J]. Opt Lett, 2015, 40(18): 4222-4225.

【29】Bricchi E, Mills J D, Kazansky P G, et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Opt Lett, 2002, 27(24): 2200-2202.

【30】Kim J K, Kim J Oh K, et al. Fabrication of micro fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system[J]. IEEE Photonics Technol Lett, 2009, 21(1): 21-23.

【31】Kim J, Ha W, Park J, et al. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed Laser[J]. IEEE Photonics Technol Lett, 2013, 25(8): 761-763.

【32】Komlenok M S, Volodkin B O, Knyazev B A, et al. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation[J]. Quantum Electron, 2015, 45(10): 933-936.

【33】Li Q K, Yu Y H, Wang L, et al. Sapphire-based fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technol Lett, 2016, 28(12): 1290-1293.

【34】Niu L G, Wang D, Jiang T, et al. High fill-factor multilevel fresnel zone plate arrays by femtosecond laser direct writing[J]. Opt Commun, 2011, 284(3): 777-781.

【35】Sun Y L, Dong W F, Niu L G, et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 2014, 3(1): e129.

【36】Chen Q D, Lin X F, Niu L G, et al. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Opt Lett, 2008, 33(21): 2559-2561.

【37】Zhou K, Guo Z, Ding W, et al. Analysis on volume grating induced by femtosecond laser pulses[J]. Opt Express, 2010,18(13): 13640-13646.

【38】Yu X, Yao B, Lei M, et al. Polarization-sensitive diffractive optical elements fabricated in br films with femtosecond laser[J]. Appl Phys B, 2014, 115(3): 365-369.

【39】Xiao T P, Cifci O S, Bhargava S, et al. Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3d direct laser writing[J]. ACS Photonics, 2016, 3(5): 886-894.

【40】Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 1996, 21(21): 1729-1731.

【41】Fletcher L B, Witcher J J, Troy N, et al. Direct femtosecond laser waveguide writing inside zinc phosphate glass[J]. Opt Express, 2011, 19(9): 7929-7936.

【42】Okhrimchuk A, Mezentsev V, Shestakov A, et al. Low loss depressed cladding waveguide inscribed in YAGNd single crystal by femtosecond laser pulses[J]. Opt Express, 2012, 20(4): 3832-3843.

【43】Sakakura M, Sawano T, Shimotsuma Y, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Opt Express, 2010, 18(12): 12136-12143.

【44】He R, Hernández-Palmero I, Romero C, et al. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing[J]. Opt Express, 2014, 22(25): 31293-31298.

【45】Sun Y L, Sun S M, Zheng B Y, et al. Protein-based multi-mode interference optical micro-splitters[J]. IEEE Photonics Technol Lett, 2016, 28(6): 629-632.

【46】Li B, Jiang L, Wang S, et al. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing[J]. Opt Laser Technol, 2011, 43(8): 1420-1423.

【47】Chen C, Yu Y S, Yang R, et al. Reflective optical fiber sensors based on tilted fiber bragg gratings fabricated with femtosecond laser[J]. Journal of Lightwave Technology, 2013, 31(3): 455-460.

【48】Cui W, Si J, Chen T, et al. Compact bending sensor based on a fiber bragg grating in an abrupt biconical taper[J]. Opt Express, 2015, 23(9): 11031-11036.

【49】Duan J, Xie Z, Wang C, et al. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber[J]. Opt Laser Technol, 2016, 83: 94-98.

【50】Lin J, Yu S, Ma Y, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing[J]. Opt Express, 2012, 20(9): 10212-10217.

【51】Lin J, Xu Y, Song J, et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:Glass substrate by three-dimensional femtosecond laser micromachining[J]. Opt Lett, 2013, 38(9): 1458-1460.

【52】Ku J F, Chen Q D, Ma X W, et al. Photonic-molecule single-mode laser[J]. IEEE Photonics Technol Lett, 2015, 27(11): 1157-1160.

【53】Huang Q, Zhan X, Hou Z, et al. Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing[J]. Opt Commun, 2016, 362: 73-76.

【54】Salter P S, Booth M J. Addressable microlens array for parallel laser microfabrication[J]. Opt Lett, 2011, 36(12): 2302-2304.

【55】Li Q S, W L J, Tian Z N, et al. Direct integration of aspherical microlens on vertical-cavity surface emitting laser emitting surface for beam shaping[J]. Opt Commun, 2013, 300: 269-273.

【56】Lü Chao, Xia H, Guan W, et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems[J]. Scientific Reports, 2016, 6: 19801.

【57】Choi J, Ramme M, Richardson M. Directly laser-written integrated photonics devices including diffractive optical elements[J]. Opt Lasers Eng, 2016, 83: 66-70.

【58】Crespi A, Ramponi R, Osellame R, et al. Integrated photonic quantum gates for polarization qubits[J]. Nature Communications, 2011, 2: 566.

【59】Corrielli G, Crespi A, Geremia R, et al. Rotated waveplates in integrated waveguide optics[J]. Nature Communications, 2014, 5: 4249.

【60】Della Valle G, Taccheo S, Osellame R, et al. 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing[J]. Opt Express, 2007, 15(6): 3190-3194.

【61】Ams M, Dekker P, Marshall G D, et al. Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique[J]. Opt Lett, 2009, 34(3): 247-249.

【62】Cheng Y, Sugioka K, Midorikawa K, et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser[J]. Opt Lett, 2003, 28(13): 1144-1146.

【63】Wu D, Chen Q D, Niu L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16): 2391-2394.

【64】Kato J, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl Phys Lett, 2005, 86(4): 044102.

【65】Juodkazis S, Mizeikis V, Misawa H. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications[J]. J Appl Phys, 2009, 106(5): 051101.

引用该论文

Cao Xiaowen,Zhang Lei,Yu Yongsen,Chen Qidai. Application of Micro-Optical Components Fabricated with Femtosecond Laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102004

曹小文,张雷,于永森,陈岐岱. 飞秒激光制备微光学元件及其应用[J]. 中国激光, 2017, 44(1): 0102004

被引情况

【1】李苏宇,费德厚,金明星吉林大学原子与分子物理研究所, 吉林省应用原子分子光谱重点实验室, 吉林 长春 130012. 飞秒激光脉冲在部分激发气体中的传播. 中国激光, 2017, 44(9): 902002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF