中国激光, 2017, 44 (2): 0208001, 网络出版: 2017-02-22   

大口径超薄晶体的面形畸变分析和低应力新型夹持方法探索

Surface Aberration Analysis for Large-Aperture and Ultra-Thin Crystal and New Type of Clamping Method with Low-Stress
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国科学技术大学中国科学院量子信息重点实验室, 安徽 合肥 230026
摘要
针对惯性约束聚激光装置终端光学系统中使用的大口径超薄晶体的面形畸变,探索了一种低应力新型夹持方法——四周回形全紧固夹持法。从谐波转换模型和晶体准直两方面进行了分析,表明晶体面形畸变将降低三倍频效率和导致准直光斑弥散,并提出了晶体面形总畸变小于5 μm和晶体装夹畸变小于加工畸变的两项控制目标。再根据力学模型,设计了四周回形全紧固夹持法的精密装配结构,并对该结构进行了精密加工控制和有限元分析,以及实验验证。验证结果表明,利用低应力新型夹持方法,晶体装配后的总面形畸变小于5 μm,说明该方法能够满足晶体的面形畸变控制目标。
Abstract
Aiming at the surface aberration for large-aperture and ultra-thin crystal used on the final optical system of inertial confinement fusion facility, a new design of precision mounts with low-stress, named clip-like clamped support all four edges, is proposed. Based on the harmonic conversion model and crystal alignment, the third harmonic generation efficiency will fall and the alignment focal spot will widen because of the crystal surface aberration. So the two control aims must be achieved that the surface aberration should be less than 5 μm and the crystal clamping aberration should be less than machining aberration. Based on the mechanics model, the clip-like clamped support all four edges of precise assembly structure is designed. The precision machining control, finite element analysis, and experimental verification are carried out. Experimental results show that the total surface aberration is less than 5 μm by using the method of precision mounts with low-stress, this method meets the demand of crystal surface aberration control.

向勇, 李恪宇, 王伟, 冯斌, 韩伟, 王芳. 大口径超薄晶体的面形畸变分析和低应力新型夹持方法探索[J]. 中国激光, 2017, 44(2): 0208001. Xiang Yong, Li Keyu, Wang Wei, Feng Bin, Han Wei, Wang Fang. Surface Aberration Analysis for Large-Aperture and Ultra-Thin Crystal and New Type of Clamping Method with Low-Stress[J]. Chinese Journal of Lasers, 2017, 44(2): 0208001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!