首页 > 论文 > 电光与控制 > 24卷 > 2期(pp:43-46)

遥感图像中的机场跑道检测算法

An Algorithm for Detecting the Airport Runway in Remote Sensing Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用机场跑道的高灰度特征和整体性检测遥感图像中的机场跑道。首先,利用模糊增强方法进行图像预处理;接着,对图像进行阈值分割获得二值图像,用像素标记法进行连通域提取,定位4个面积最大的区域作为疑似机场区域;然后,在疑似机场区域内,对图像进行Canny边缘检测,用Hough变换提取出直线段;最后,把含有最长平行直线的区域作为机场区域。实验结果表明,机场跑道检测算法能在遥感图像中准确有效地检测出机场跑道。

Abstract

The characteristics of high grey-scale and integrality of the airport runways are used for detecting them in remote sensing image.Firstly, the image was pre-processed by using fuzzy enhancement.Secondly, binary image was obtained though threshold segmentation, and pixel labeling method was used for connected area extraction, thus the largest four areas were chosen as suspected airport areas, which were then located.Then, within these four suspected airport areas, edges were detected on the image by using Canny edge detection operator, and straight line segments were extracted by using Hough transform.Finally, the area with the longest parallel lines was recognized as the airport area.Experimental results show that by using the airport runway detection algorithm, the airport runways in remote sensing image can be detected efficiently and accurately.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP753

DOI:10.3969/j.issn.1671-637x.2017.02.009

所属栏目:学术研究

基金项目:光电控制技术重点实验室和航空科学基金联合资助(20135152049)

收稿日期:2015-09-12

修改稿日期:2016-03-31

网络出版日期:--

作者单位    点击查看

艾淑芳:光电控制技术重点实验室,河南 洛阳 471000
闫钧华:光电控制技术重点实验室,河南 洛阳 471000南京航空航天大学航天学院,南京 210016
李大雷:光电控制技术重点实验室,河南 洛阳 471000
许俊峰:南京航空航天大学航天学院,南京 210016
沈静:南京航空航天大学航天学院,南京 210016

备注:艾淑芳(1983-),女,河南辉县人,硕士,工程师,研究方向为红外图像处理。

【1】MENA J B, MALPICA J A.An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery[J].Pattern Recognition Letter, 2005, 26(9): 1201-1220.

【2】POPESCU D, DOBRESCU R, MEREZEANU D.Road analysis based on texture similarity evaluation[C]//Proceedings of the 7th WSEAS International Conference on Signal Processing, 2008:47-51.

【3】闫钧华,许俊峰,艾淑芳,等.基于局部多特征的机场跑道检测算法[J].仪器仪表学报,2014, 35(8):1714-1720.

【4】QU Y, LI C, ZHENG N.Airport detection base on support vector machine from a single image[C]//The 5th International Conference on Information, Communications and Signal Processing, IEEE, 2005:546-549.

【5】李金宗,穆立胜,李冬冬,等.大尺度高分辨率遥感图像机场目标的快速识别[J].光电子·激光,2010, 21(7):1083-1088.

【6】陈旭光,林卉.遥感图像中机场目标的识别方法[J].计算机工程与应用,2012, 48(25):194-197.

【7】徐正光,鲍东来,张利欣.基于递归的二值图像连通域像素标记算法[J].计算机工程,2006, 32(24):186-188.

【8】LIU D, HE L, CARIN L.Airport detection in large aerial optical imagery[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004.doi: 10.1109/ICASSP.2004.1327222.

【9】KOU Z, SHI Z, LIU L.Airport detection based on line segment detector[C]//International Conference on Computer Vision in Remote Sensing(CVRS), IEEE, 2012:72-77.

【10】张学峰,李丽娟,刘珂.基于直线提取的机场跑道识别方法[J].激光与红外,2008, 38(12):1277-1280.

引用该论文

AI Shu-fang,YAN Jun-hua,LI Da-lei,XU Jun-feng,SHEN Jing. An Algorithm for Detecting the Airport Runway in Remote Sensing Image[J]. Electronics Optics & Control, 2017, 24(2): 43-46

艾淑芳,闫钧华,李大雷,许俊峰,沈静. 遥感图像中的机场跑道检测算法[J]. 电光与控制, 2017, 24(2): 43-46

被引情况

【1】郑伟勇,李艳玮,周 兵. 基于L0范数稀疏表达的图像盲超分辨率重建. 电光与控制, 2017, 24(12): 112-115

【2】张作省,杨程亮,朱瑞飞,高 放,于 野,钟 兴. 联合深度卷积神经网络的遥感影像机场识别算法. 电光与控制, 2018, 25(6): 83-89

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF