首页 > 论文 > 激光与光电子学进展 > 54卷 > 3期(pp:30605--1)

相干光通信中预均衡技术的激光器线宽容忍度

Laser Linewidth Tolerance of Pre-Equalization Technology in Coherent Optical Communication

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了一种基于参考的预均衡(RPE)技术,该技术基于自相干混频技术,可实现自相干零差检测系统中传递函数精确定性信息的测量,并且可对传输信号进行预加重处理。RPE技术可以对所有电和光的线性损失进行预补偿,电和光的线性损失包括调制器和功率放大器引起的带宽限制,以及光学前置滤波器造成的高频分量损失。RPE校准性能很大程度上取决于发射机与接收机的激光器线宽。研究了自相干零差检测系统中几种常见激光源的RPE校准性能,提出了一种能够获得传递函数精确定性信息的相位纠正算法。利用几种典型激光源,在波分复用带宽限制为25 GHz、速率为32 Gbit/s的偏振复用正交相移键控相干光通信系统中证实了该算法的可行性。

Abstract

A reference-based pre-equalization (RPE) technology is introduced. The technology, which is based on the self-coherent mixing frequency technology, can measure the accurate qualitative information of transfer function in self-coherent homodyne detection system and pre-emphasize the transmission signal. The RPE technology can pre-compensate all electrical and optical linear loss, including the bandwidth limitation of modulator and power amplifier and the high-frequency component loss caused by optical pre-filter. The calibration performance of RPE strongly depends on the laser linewidth of both the transmitter and the receiver. We investigate the RPE calibration performances of several laser sources which are universal in self-coherent homodyne detection system, and develop a phase correction algorithm to obtain accurate qualitative information of the transfer function. The feasibility of the algorithm is verified when we use several types of laser sources in coherent optical communication system with polarization-multiplexed quadrature phase shift keying. The wavelength division multiplexing bandwidth limitation is 25 GHz and the rate is 32 Gbit/s.

投稿润色
补充资料

中图分类号:TN929.1

DOI:10.3788/lop54.030605

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61401166)

收稿日期:2016-10-24

修改稿日期:2016-11-14

网络出版日期:--

作者单位    点击查看

张惠忠:华侨大学信息科学与工程学院, 福建 厦门 361021
董 泽:华侨大学信息科学与工程学院, 福建 厦门 361021

联系人作者:张惠忠(1064718471@qq.com)

备注:张惠忠(1993-),男,硕士研究生,主要从事相干光通信方面的研究。

【1】Winzer P. Beyond 100G ethernet[J]. IEEE Communications Magazine, 2010, 48(7): 11388258.

【2】Chandrasekhar S, Liu X. Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection[J]. Optics Express, 2009, 17(24): 21350-21361.

【3】Zhang Xia, Tian Feng, Zhang Xiaoguang, et al. Study of coherent optical wavelength division multiplexing terabit transmission experiment system based on multi-carrier[J]. Chinese J Lasers, 2014, 41(6): 0605005.
张 霞, 田 凤, 张晓光, 等. 基于多载波的相干波分复用太比特传输实验研究[J]. 中国激光, 2014, 41(6): 0605005.

【4】Djordjevic I B. On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport[J]. Journal of Lightwave Technology, 2013, 31(16): 2969-2975.

【5】Zhang Lei, Zhang Xiaoguang, Xi Lixia, et al. Modified optical-signal-noise-ratio monitoring method based on high order statistical moment in PM-QPSK coherent optical system[J]. Chinese J Lasers, 2014, 41(5): 0505004.
张 磊, 张晓光, 席丽霞, 等. PM-QPSK相干光通信系统中基于高阶统计矩的光信噪比监测方法的修正[J]. 中国激光, 2014, 41(5): 0505004.

【6】Ding R, Zhang T, Zhang F. Experimental demonstration of multigranularity switching between optical DFT-spread-OFDM and Nyquist superchannel[J]. Chinese Optics Letters, 2014, 12(11): 110604.

【7】Geng Tianyu, Shu Qin, Ying Dali, et al. MAP blind equalization algorithm based on probability and adaptive[J]. Computer Engineering and Design, 2012, 33(10): 3720-3724.
耿天玉, 舒 勤, 应大力, 等. 基于概率和自适应的最大后验概率盲均衡算法[J]. 计算机工程与设计, 2012, 33(10): 3720-3724.

【8】Li J, Tipsuwannakul E, Eriksson T, et al. Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping[J]. Journal of Lightwave Technology, 2012, 30(11): 1664-1676.

【9】Wang J, Xie C, Pan Z. Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters[J]. Journal of Lightwave Technology, 2012, 30(23): 3679-3686.

【10】Bao Y, Li Z, Li J, et al. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion[J]. Optics Express, 2013, 21(6): 7354-7361.

【11】Cheng Yun, Liu Yi , Chen Lin, et al. Investigation of short distance optical fiber transmission technology based on Nyquist pulse subcarrier modulation[J]. Journal of Optoelectronics·Laser, 2015, 26(2): 245-250.
成 运, 刘 懿, 陈 林, 等. 基于Nyquist脉冲副载波调制的短距离光纤传输技术研究[J]. 光电子·激光, 2015, 26(2): 245-250.

【12】Dong Z, Chien H C, Jia Z, et al. Joint digital preequalization for spectrally efficient super Nyquist-WDM signal[J]. Journal of Lightwave Technology, 2013, 31(20): 3237-3242.

【13】Zhuang W, Huang W V. Phase precoding for frequency-selective Rayleigh and Rician slowly fading channels[J]. IEEE Transactions on Vehicular Technology, 1997, 46(1): 129-142.

【14】Keller T, Hanzo L. Sub-band adaptive pre-equalised OFDM transmission[C]. IEEE VTS 50th Conference on Vehicular Technology, 1999: 6505596.

【15】Zhou X, Yu J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission[J]. Journal of Lightwave Technology, 2009, 27(16): 3641-3653.

引用该论文

Zhang Huizhong,Dong Ze. Laser Linewidth Tolerance of Pre-Equalization Technology in Coherent Optical Communication[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030605

张惠忠,董 泽. 相干光通信中预均衡技术的激光器线宽容忍度[J]. 激光与光电子学进展, 2017, 54(3): 030605

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF