首页 > 论文 > 激光与光电子学进展 > 54卷 > 3期(pp:30002--1)

表面等离激元热电子超快动力学研究进展

Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

表面等离激元因具有能突破光学衍射极限、表面局域性和近场增强等奇特的光学性质,被广泛应用于光伏、光催化和光电探测等研究领域。将具有高效光捕获特性的表面等离激元与传统半导体器件相结合,可以极大地提高传统半导体器件的效率,具有重要的应用价值。由局域表面等离激元弛豫产生的热电子是将太阳能转化为电能或化学能的关键,因此从微观上研究表面等离激元热电子的产生及弛豫过程对于设计高效率表面等离激元纳米光电器件具有重要意义。综述了表面等离激元热电子的激发及其在金属-半导体材料界面处的超快动力学过程的研究进展,分析了目前存在的主要问题并对其未来的发展前景进行了展望。

Abstract

Surface plasmons have novel optical properties, such as breaking light diffraction limit, surface localization, and optical near field enhancement, so they have been widely applied in the research area of photovoltaics, photocatalysis and photodetectors. Surface plasmons have excellent light harvesting capability, which can enhance the efficiency of conventional semiconductor devices by integrating with the conventional semiconductor devices. The hot electrons generated from the decay of localized surface plasmons is the core element in converting the incident light to the electrical or chemical energy. Therefore, the study of plasmonic hot electrons generation and relaxation process in microcosm is essential for the design of high-efficiency plasmonic nanophotonic devices. This article reviews the relaxation process of surface plasmons and recent progress in the ultrafast dynamics of plasmonic hot electrons in metal-semiconductor interface, discusses the remained issues and prospects future application of plasmonic hot electrons.

中国激光微信矩阵
补充资料

中图分类号:O469

DOI:10.3788/lop54.030002

所属栏目:综述

基金项目:国家973 计划(2015CB932403)、国家自然科学基金(61422501,11674012,11374023,61521004)、北京市自然科学基金(L140007)、教育部全国优秀博士学位论文专项基金(201420)、国家万人计划青年拔尖人才专项基金

收稿日期:2016-10-24

修改稿日期:2016-11-14

网络出版日期:--

作者单位    点击查看

单杭永:北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871
祖 帅:北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871
方哲宇:北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871

联系人作者:单杭永(shanhangyong@pku.edu.cn)

备注:单杭永(1992-),男,博士研究生,主要从事表面等离激元热电子方面的研究。

【1】Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotech, 2015, 10(1): 25-34.

【2】Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photon, 2014, 8(2): 95-103.

【3】Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Mater, 2010, 9(3): 205-213.

【4】Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys Rev Lett, 1997, 78(9): 1667-1670.

【5】Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

【6】Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photon, 2012, 6(11): 737-748.

【7】Ren Mengxin, Xu Jingjun. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.
任梦昕, 许京军. 表面等离子体激元增强非线性的原理及应用[J]. 激光与光电子学进展, 2013, 50(8): 080002.

【8】Gao Jun. Investigation of siliver nanoparticle films in plasmonics for use as fluorescence enhancement of RH6G molecules[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061601.
高 俊. Ag纳米薄膜的等离激元对RH6G分子的荧光增强研究[J]. 激光与光电子学进展, 2015, 52(6): 061601.

【9】Wang Yue, Wang Xuan, Li Longwei. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.
王 玥, 王 暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

【10】Chalabi H, Brongersma M L. Plasmonics: Harvest season for hot electrons[J]. Nature Nanotech, 2013, 8(4): 229-230.

【11】Schuck P J. Hot electrons go through the barrier[J]. Nature Nanotech, 2013, 8(11): 799-800.

【12】Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chem Rev, 2011, 111(6): 3858-3887.

【13】Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. J Phys Chem B, 1999, 103(21): 4212-4217.

【14】Link S, Burda C, Wang Z L, et al. Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation[J]. J Chem Phys, 1999, 111(3): 1255-1264.

【15】Voisin C, Christofilos D, Fatti N D, et al. Size-dependent electron-electron interactions in metal nanoparticles[J]. Phys Rev Lett, 2000, 85(10): 2200-2203.

【16】Fatti N D, Flytzanis C, Vallee F. Ultrafast induced electron-surface scattering in a confinedmetallic system[J]. Applied Physics B, 1999, 68(3): 433-437.

【17】Groeneveld R H M, Sprik R. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au[J]. Phys Rev B, 1995, 51(17): 11433-11445.

【18】Bigot J, Merle J, Cregut O, et al. Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses[J]. Phys Rev Lett, 1995, 75(25): 4702-4705.

【19】Ahmadi T S, Logunov S L, El-Sayed M A. Picosecond dynamics of colloidal gold nanoparticles[J]. J Phys Chem, 1996, 100(20): 8053-8056.

【20】Logunov S L, Ahmadi T S, El-Sayed M A, et al. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy[J]. J Phys Chem B, 1997, 101(19): 3713-3719.

【21】Weiner A M. Ultrafast-pulse measurement methods[M]. John Wiley & Sons, Inc, 2008: 85-146.

【22】Weiner A M. Ultrafast time-resolved spectroscopy[M]. John Wiley & Sons, Inc, 2008: 422-506.

【23】翁羽祥, 陈海龙. 超快激光光谱原理与技术基础[M]. 北京: 化学工业出版社, 2013: 268-274.

【24】Schoenlein R, Lin W, Fujimoto J, et al. Femtosecond studies of nonequilibrium electronic processes in metals[J]. Phys Rev Lett, 1987, 58(16): 1680-1683.

【25】Sun C K, Vallee F, Acioli L H, et al. Femtosecond-tunable measurement of electron thermalization in gold[J]. Phys Rev B, 1994, 50(20): 15337-15348.

【26】Mubeen S, Lee J, Singh N, et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons[J]. Nature Nanotech, 2013, 8: 247-251.

【27】Park J Y, Kim S M, Lee H, et al. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity[J]. Acc Chem Res, 2015, 48(8): 2475-2483.

【28】Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer[J]. Adv Mater, 2014, 26(37): 6467-6471.

【29】Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Lett, 2012, 12(7): 3808-3813.

【30】Manjavacas A, Liu J G, Kulkarni V, et al. Plasmon-induced hot carriers in metallic nanoparticles[J]. ACS Nano, 2014, 8(8): 7630-7638.

【31】Sundararaman R, Narang P, Jermyn A S, et al. Theoretical predictions for hot-carrier generation from surface plasmon decay[J]. Nature Commun, 2014, 5(5): 5788.

【32】Bernardi M, Mustafa J, Neaton J B, et al. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals[J]. Nature Commun, 2015, 6: 7044.

【33】Brown A M, Sundararaman R, Narang P, et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons,surfaces, and geometry[J]. ACS Nano, 2016, 10(1): 957-966.

【34】Lee Y K, Lee H, Lee C H, et al. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes[J]. Journal of Physics: Condensed Matter, 2016, 28(25): 254006.

【35】Kim S M, Lee S W, Moon S Y, et al. The effect of hot electrons and surface plasmons on heterogeneous catalysis[J]. Journal of Physics: Condensed Matter, 2016, 28(25): 254002.

【36】Jiang R, Li B, Fang C, et al. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Adv Mater, 2014, 26(31): 5274-5309.

【37】Ingram D B, Composite silver/titania photocatalysts for visible light water splitting: the role of silver surface plasmons[D]. American: University of Michigan, 2011: 30-34.

【38】Zhang X, Chen Y L, Liu R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 46401-46441.

【39】Furube A, Du L, Hara K, et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J Am Chem Soc, 2007, 129(48): 14852-12853.

【40】Wu K, Rodriguez-Cordoba W E, Yang Y, et al. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures[J]. Nano Lett, 2013, 13(11): 5255-5263.

【41】Harutyunyan H, Martinson A B F, Rosenmann D, et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots[J]. Nature Nanotech, 2015, 10(9): 770-774.

【42】Zeng P, Cadusch J, Chakraborty D, et al. Photoinduced electron transfer in the strong coupling regime: waveguide-plasmon polaritons[J]. Nano Lett, 2016, 16(4): 2651-2656.

【43】Yu Y, Ji Z, Zu S, et al. Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures[J]. Advanced Functional Materials, 2016, 26(36): 6394-6401.

【44】Wu K, Chen J, McBride J R, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 2015, 349(6248): 632-635.

【45】Narang P, Sundararaman R, Atwater H A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion[J]. Nanophotonics, 2016, 5(1): 96-111.

【46】Mondal N, Samanta A. Ultrafast charge transfer and trapping dynamics in a colloidal mixture of similarly charged CdTe quantum dots and silver nanoparticles[J]. J Phys Chem C, 2016, 120(1): 650-658.

【47】Li J, Cushing S K, Meng F, et al. Plasmon-induced resonance energy transfer for solar energy conversion[J]. Nature Photon, 2015, 9(9): 601-607.

【48】Chen S C, Wu K H, Li J X, et al. In-Situ probing plasmonic energy transfer in Cu (In, Ga) Se2 solar cells by ultrabroadband femtosecond pump-probe spectroscopy[J]. Sci Rep, 2015, 5: 18354.

引用该论文

Shan Hangyong,Zu Shuai,Fang Zheyu. Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002

单杭永,祖 帅,方哲宇. 表面等离激元热电子超快动力学研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030002

被引情况

【1】石鑫,孙诚,王晓秋. 适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构. 激光与光电子学进展, 2018, 55(1): 10501--1

【2】陈佳琦,袁国秋,王孟,曹敏. 表面等离激元受激辐射方向性调控研究进展. 激光与光电子学进展, 2018, 55(3): 30007--1

【3】崔健,季博宇,林景全. 激发等离激元Fano共振的金属类圆盘纳米结构体系. 激光与光电子学进展, 2018, 55(6): 60002--1

【4】胡金凤,刘娟,刘彬,陈佳,梁红勤,廖云程,蔡旭辉. 基于双短腔耦合系统等离激元诱导吸收效应及多开关功能应用. 激光与光电子学进展, 2018, 55(10): 102401--1

【5】赖淑妹,黄志伟,王仰江,陈松岩. Ag纳米结构局域表面等离激元共振模拟与分析. 激光与光电子学进展, 2018, 55(12): 122601--1

【6】孙泉,祖帅,上野贡生,龚旗煌,三泽弘明. 超快光电子显微技术在纳米光子学中的应用. 中国激光, 2019, 46(5): 508001--1

【7】梁洁,刘鑫,周林. 等离激元光热效应的新应用:太阳能蒸气产生. 激光与光电子学进展, 2019, 56(20): 202405--1

【8】于远方,倪振华. 表面等离激元热电子光电探测. 激光与光电子学进展, 2019, 56(20): 202403--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF