强激光与粒子束, 2017, 29 (4): 049001, 网络出版: 2017-03-29   

飞秒激光诱导钛表面形成高空间频率周期条纹结构

High-spatial frequency periodic structures induced on Ti surface by femtosecond laser pulses
作者单位
西南科技大学 理学院, 极端条件物质特性联合实验室, 四川 绵阳 621010
摘要
利用波长为800 nm的飞秒激光,在空气和去离子水中诱导钛表面形成不同的周期条纹结构。在空气中,激光能量密度为0.265 J/cm2时,钛表面主要形成周期为500~560 nm低空间频率条纹结构; 激光能量密度为0.102 J/cm2时,主要形成的是周期为220~340 nm高空间频率条纹结构。两种条纹均垂直于入射激光偏振方向,且条纹周期随着脉冲重叠数的增大而增大。在水中,除形成垂直激光偏振方向、周期为215~250 nm的高空间频率条纹结构,还形成了平行于激光偏振方向且周期约为入射激光波长八分之一的高空间频率条纹结构。利用表面等离子体理论、二次谐波及Sipe理论对各种周期条纹结构的形成机理进行分析,发现周期条纹结构的形成与钛表面氧化层有密切的关系。
Abstract
This paper reports the formation of different periodic structures on Ti surface irradiated by 800 nm femtosecond laser pulses in air and water.In air, low spatial frequency periodic structures with period of 500-560 nm are obtained with high laser fluence irradiation; high spatial frequency periodic structures with period of 220-340 nm are obtained with low laser fluence irradiation.All of them are perpendicular to the laser polarization and the period of the structures increases with pulse numbers.In water, not only high spatial frequency periodic structures (215-250 nm) with direction perpendicular to the laser polarization are obtained, but also high spatial frequency periodic structures (about one eighth of laser wavelength) with direction parallel to the laser polarization are obtained.Combined with the surface plasmon polaritons, second harmonic generation and the Sipe model to interpret different periodic structures′ formation mechanism, we found that the formation of periodic structures is related to the titanium oxide layer.

刘凯军, 李晓红, 王凯, 周强, 杨永佳, 邱荣. 飞秒激光诱导钛表面形成高空间频率周期条纹结构[J]. 强激光与粒子束, 2017, 29(4): 049001. Liu Kaijun, Li Xiaohong, Wang Kai, Zhou Qiang, Yang Yongjia, Qiu Rong. High-spatial frequency periodic structures induced on Ti surface by femtosecond laser pulses[J]. High Power Laser and Particle Beams, 2017, 29(4): 049001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!