首页 > 论文 > 应用光学 > 38卷 > 2期(pp:227-230)

车削零件表面粗糙度图像法检测优选方法

Optimal method for image detection based on surface roughness of turning parts

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现对车削零件表面粗糙度检测, 提出一种基于机器视觉表面粗糙度检测图像处理的新方法。该方法先按相应算法对所采集图像剔出受光衍射影响严重区域, 然后再按其灰度分布情况进行区域优化, 获得的图像灰度特征参数能反映表面粗糙度量值的有效特征区域。用该方法对表面粗糙度Ra标称值为0.8 μm~12.5 μm的五种车削样件测试, 处理后图像灰度的均值、方差、能量和熵等特征参数与Ra标称值单调关系显著, 各特征曲线的非线性误差均在1.5%以内。对比实验显示, 这种特征提取和区域优化方法可应用于表面粗糙度的区分与检测。

Abstract

In order to realize the purpose of surface roughness detection for turning parts, a new image processing method for surface roughness detection based on machine vision is proposed. Firstly delete part of collected image that severely affected by diffraction according to corresponding algorithm, and then optimize regions according to gray distribution, so as to obtain image grey feature parameters, which can reflect effective feature areas of surface roughness value. Five turning samples with Ra nominal value ranging from 0.8 μm to 12.5 μm are tested using this method. Feature parameters such as mean value, variance, energy and entropy of processed image have a remarkable monotonic relationship with Ra nominal value. The nonlinear error of each feature parameters relationship curves are all within 1.5%. Contrast experiment results show the method can be applied to distinguish and detect surface roughness.

投稿润色
补充资料

中图分类号:TN206;TH741

DOI:10.5768/jao201738.0202004

所属栏目:光电信息获取与处理

基金项目:陕西省科技厅工业攻关项目( 2014K06-44)

收稿日期:2016-07-04

修改稿日期:2016-10-28

网络出版日期:--

作者单位    点击查看

陈曼龙:陕西理工大学 机械工程学院, 陕西 汉中 723000
侯东明:陕西理工大学 机械工程学院, 陕西 汉中 723000
王会江:陕西理工大学 机械工程学院, 陕西 汉中 723000

联系人作者:陈曼龙(hz202053@126.com)

备注:陈曼龙(1968-), 男, 陕西汉中人, 硕士, 副教授, 硕士生导师, 主要从事机器视觉及测控技术方面的研究。

【1】Chen Gang,Zhou Wenjing,Hu Zhen,et al. Surface roughness measurement based on digital holography [J]. Journal of Applied Optics,2014, 35(6): 1040-1047.
陈刚, 周文静, 胡祯, 等.表面粗糙度数字全息检测[J].应用光学,2014,35(6): 1040-1047.

【2】Guan Qingyan, Research and development of stylus surface roughness measurement [D].Nanjing: China Jiling University,2013.
管清岩.触针式表面粗糙度测量系统的研究与开发[D].南京: 中国计量学院,2013.

【3】Liu Yin, Lang Zhiguo, Tang Wenyan.Development of measurement system about light-section microscope for surface roughness[J].Infrared and Laser Engineering,2012,41(3): 775-779.
刘颖,郎治国,唐文彦.表面粗糙度光切显微镜测量系统的研制[J].红外与激光工程,2012,41(3): 775-779.

【4】Pan Yongqiang,Hang Lingxia. Optical properties and suface roughness of TiO2 thin films prepared by using oblique angle deposition[J]. Chinese Journal of Lasers,2011,38(2): 02007001-1-5.
潘永强, 杭凌侠. 斜角入射沉积TiO2薄膜的光学特性和表面粗糙度[J]. 中国激光, 2011, 38(2): 0207001-1-5.

【5】Xu Changshan,Gong Yan,Xiang Yang,et al. Effect of transfer function of profilometer on roughness measurement of ultra-smooth surface[J].Optics and Precision Engineering,2002,10(1): 45-49.
徐长山,巩岩,向阳,等.表面轮廓仪传递函数对超光滑表面粗糙度测量的影响[J].光学精密工程,2002,10(1): 45-49.

【6】Cao Jianwei, Lu Rongsheng, Lei Liqiao, et al. Grinding surface roughness measurement based on the variogram of speckle pat-tern texture[J]. Chinese Journal Scientific Instrument,2010, 31(10): 2302-2306.
曹健渭,卢荣胜,雷丽巧,等.基于散斑纹理变差函数的平磨表面粗糙度测量技术[J].仪器仪表学报,2010,31(10): 2302-2306.

【7】Yan Suo,Li Dinggen.Optical power control of triangulation method laser displacement measuring system[J]. Optical Technique,2013,39(2): 141-144.
严索,李顶根.三角法激光位移测量系统的光功率控制研究[J].光学技术,2013,39(2): 141-144.

【8】Xu Yan. Threshold segmentation method of microscopic image[J]. Journal of Applied Optics, 2010, 31(5): 745-747.
许艳. 显微图像阈值分割算法的研究[J].应用光学,2010, 31(5): 745-747.

【9】Chen Aidi, Wang Shouyi. on-line delecting method for part surface roughness[J].China Mechanical Engineering, 2002,13(6): 494-496,523.
陈爱伟, 王守义, 零工件表面粗糙度的在线测量技术[J].中国机械工程,2002, 13(6): 494-496, 523.

【10】Kumar B M,Ratnam M M.Machine vision method for non-contact measurement of surface roughness of a rotating work piece[J].Sensor Review,2015,(35)1: 10-19.

【11】Mohan Kumar Balasundaram,Mani Maran Ratnam.In-process measurement of surface roughness using machine vision with sub-pixel edge detection in finish turning[J].International Journal of Precision Engineering and Manufacturing,2014,15(11): 2239-2249.

【12】Rene Kamguem,Souheil Antoine Tahan,Victor Songmene. Evaluation of machined part surface roughness using image texture gradient factor[J].International Journal of Precision Engineering and Manufacturing,2013,14(2): 183-190.

【13】Srinagalakshmi Nammi B.Ramamoorthy effect of surface lay in the surface roughness evaluation using machine vision[J].Optik-International Journal for Light and Electron Optics,2014,125(15): 3954-3960.

【14】Shi Xiaojun, Zhang Yuqing,Zhang Xiaohui.Measurement of lapped surface roughness based on machine vision technique[J].Machine Design & Research,2010,26(3): 103-107.
时小军,张玉琴,张小辉.基于机器视觉技术的研磨表面粗糙度检测[J].机械设计与研究, 2010, 26(3): 103-107.

【15】Su Guoying,Qu Xinghua ,Zhang Fuming.Experiments on metal surface characteris’ effect on differential visual measurement[J].Acta Optica Sinica,2013,33(1): 153-158.
苏国营,曲兴华,张福民.金属表面特性对差动式视觉测量的影响实验[J].光学学报,2013,33(1): 153-158.

引用该论文

Chen Manlong,Hou Dongming,Wang Huijiang. Optimal method for image detection based on surface roughness of turning parts[J]. Journal of Applied Optics, 2017, 38(2): 227-230

陈曼龙,侯东明,王会江. 车削零件表面粗糙度图像法检测优选方法[J]. 应用光学, 2017, 38(2): 227-230

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF