首页 > 论文 > 激光与光电子学进展 > 54卷 > 5期(pp:50003--1)

硅基纳米光子集成回路中的模式转换与耦合

Mode Conversion and Coupling in Silicon-Based Nanometer Photonic Integrated Circuits

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

硅纳米光波导具有超高折射率差与超小横截面, 因而具有超强光场限制能力, 为实现超高集成度纳米光子回路提供了一种极具吸引力的途径。众所周知, 在光子集成回路中, 模式转换与耦合是实现各种功能器件的重要基础。对硅光子集成回路中的模式转换与耦合原理、新结构与新器件进行了详细分析和讨论。研究了硅纳米光波导锥形结构中模式传输及演化过程, 揭示了其特有的偏振相关模式转换机制。结果表明, 当光波导横截面存在不对称性时, 可能在某些特定波导宽度范围内产生偏振模杂化, 为实现偏振旋转提供了一种方便的方法。通过调控非对称定向耦合结构中模式转换与耦合的相位匹配条件, 为实现超小型偏振分束器、大带宽模式复用-解复用器等关键器件提供重要途径。

Abstract

With ultra-high index contrast and ultra-small cross sections, silicon nanometer optical waveguides have super light field limit ability and provide a very promising way to realize nano-photonic integrated circuits with high integration density. It is well-known that mode conversion and coupling play an important role for realizing various functionality elements in photonic integrated circuits. The theory of mode conversion and coupling new structures and devices in silicon photonics integrated circuits are analyzed and discussed in detail. The mode transmission and evolution process of silicon nanometer optical waveguide tapered structure are studied, and the unique polarization-dependent mode conversion mechanism is revealed. The results show that when asymmetry exists in the cross section of the optical waveguide, it is possible to produce polarization mode miscellaneous in some specific waveguide widths. Which provide a convenient method for realizing polarization rotation. By adjusting the phase matching conditions of mode conversion and coupling in asymmetric directional coupled structures, important approaches for realizing ultra-small polarization-beam splitters as well as broadband mode multiplexers/demultiplexers are provided.

投稿润色
补充资料

中图分类号:TN256

DOI:10.3788/lop54.050003

所属栏目:综述

基金项目:国家自然科学基金优秀青年基金(61422510)、国家自然科学基金委员会与香港研究资助局联合科研基金(61431166001)

收稿日期:2016-11-30

修改稿日期:2017-01-04

网络出版日期:--

作者单位    点击查看

李晨蕾:浙江大学光电科学与技术学院光及电磁波研究中心, 浙江 杭州 310058
戴道锌:浙江大学光电科学与技术学院光及电磁波研究中心, 浙江 杭州 310058

联系人作者:李晨蕾(lichenlei@zju.edu.cn)

备注:李晨蕾(1992-), 女, 硕士研究生, 主要从事硅纳米光波导及模式调控器件方面的研究。

【1】Krishnamoorthy A V, Goossen K W. Optoelectronic-VLSI: photonics integrated with VLSI circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(6): 899-903.

【2】Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity, and loss reduction[J]. Light: Science and Application, 2012, 1(81): 1-14.

【3】Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors[J]. IEEE Transaction on Computers, 2008, 57(9): 1246-1260.

【4】Nicholes S C, Masanovic M L, Jevremovic B, et al. An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip[J]. Journal of Lightwave Technology, 2010, 28(4): 641-650.

【5】Li Chaoyi, An Junming, Zhang Jiashun, et al. Integrated transmitter and receiver chips for data center[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120002.
李超懿, 安俊明, 张家顺, 等. 数据中心发射及接收集成芯片研究进展[J]. 激光与光电子学进展, 2016, 53(12): 120002.

【6】Bogaerts W, Dumon P, Thourhout D V, et al. Compact wavelength-selective functions in silicon-on-insulator photonic wires[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394-1401.

【7】Sasaki K, Ohno F, Motegi A, et al. Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides[J]. Electronics Letters, 2005, 41(14): 801-802.

【8】Dai D X, Liu L, Wosinski L, et al. Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-SOI nanowire waveguides[J]. Electronics Letters, 2006, 42(7): 400-402.

【9】Bogaerts W, Selvaraja S K, Dumon P, et al. Silicon-on-insulator spectral filters fabricated with CMOS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33-44.

【10】Fukuda H, Yamada K, Tsuchizawa T, et al. Silicon photonic circuit with polarization diversity[J]. Optics Express, 2008, 16(7): 4872-4880.

【11】Shani Y, Henry C, Kistler R, et al. Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon[J]. Applied Physics Letters, 1989, 55(23): 2389-2391.

【12】Kasaya K, Mitomi O, Naganuma M, et al. A simple laterally tapered waveguide for low-loss coupling to single-mode fibers[J]. IEEE Photonics Technology Letters, 1993, 5(3): 345-347.

【13】Schwander T, Fischer S, Kramer A, et al. Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP[J]. Electronics Letters, 1993, 29(4): 326-328.

【14】Yang L, Dai D X, Yang B, et al. Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a Si rib waveguide[J]. Applied Optics, 2009, 48(4): 672-678.

【15】Dai D X, He S L, Tsang H K. Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide[J]. Journal of Lightwave Technology, 2006, 24(6): 2428-2433.

【16】Barkai A, Liu A S, Kim D, et al. Double-stage taper for coupling between SOI waveguides and single-mode fiber[J]. Journal of Lightwave Technology, 2008, 26(24): 3860-3865.

【17】Soltani M, Yegnanarayanan S, Adibi A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics[J]. Optics Express, 2007, 15(8): 4694-4704.

【18】Li C, Zhou L J, Poon A W. Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling[J]. Optics Express, 2007, 15(8): 5069-5076.

【19】Rong H S, Jones R, Liu A S, et al. A continuous-wave Raman silicon laser[J]. Nature, 2005, 433(7027): 725-728.

【20】Xu Q F, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(7040): 325-327.

【21】Barrios C A, Almeida V R, Panepucci R, et al. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices[J]. Journal of Lightwave Technology, 2003, 21(10): 2332-2339.

【22】Tang Y B, Chen H W, Jain S, et al. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator[J]. Optics Express, 2011, 19(7): 5811-5816.

【23】Vermeulen D, Selvaraja S, De Cort W A, et al. Efficient tapering to the fundamental Quasi-TM mode in asymmetrical waveguides[C].15th European Conference on Integrated Optics, 2010.

【24】Dai D X, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires[J]. Optics Express, 2011, 19(11): 10940-10949.

【25】Shani Y, Henry C H, Kistler R C, et al. Integrated optic adiabatic devices on silicon[J]. IEEE Journal of Quantum Electronics, 1991, 27(3): 556-566.

【26】Fan R S, Hooker R B. Tapered polymer single-mode waveguides for mode transformation[J]. Journal of Lightwave Technology, 1999, 17(3): 466-474.

【27】Worhoff K, Lambeck P V, Driessen A. Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices[J]. Journal of Lightwave Technology, 1999, 17(8): 1401-1407.

【28】Sewell P, Benson T M, Kendall P C. Rib waveguide spot-size transformers: modal properties[J]. Journal of Lightwave Technology, 1999, 17(5): 848-856.

【29】Liu L, Ding Y H, Yvind K, et al. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits[J]. Optics Express, 2011, 19(13): 12646-12651.

【30】Dai D X, Wang Z, Julian N, et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides[J]. Optics Express, 2010, 18(26): 27404-27415.

【31】Tummidi R S, Nguyen T G, Mitchell A, et al. An ultra-compact waveguide polarizer based on anti-magic widths[C]. 8th IEEE International Conference on Group IV Photonics (GFP): 2011: 104 -106.

【32】Dai D X, He J J, He S L. Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 439-443.

【33】Schmid J H, Lamontagne B, Cheben P, et al. Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides[J]. IEEE Photonics Technology Letters, 2007, 19(11): 855-857.

【34】Dai D X, Tang Y B, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides[J]. Optics Express, 2012, 20(12): 13425-13439.

【35】Wagner R E, Cheng J. Electrically controlled optical switch for multimode fiber applications[J]. Applied Optics, 1980, 19(17): 2921-2925.

【36】Schmidt R V, Alferness R C. Directional coupler switches, modulators and filters using alternating Δβ techniques[J]. IEEE Transactions on Circuits & Systems, 1979, 26(12): 1099-1108.

【37】Kogelnik H, Schmidt R V. Switched directional couplers with alternating Δβ[J]. IEEE Journal of Quantum Electronics, 1976, 12(7): 396-401.

【38】Dai D X, Liu L, Gao S M, et al. Polarization management for silicon photonic integrated circuits[J]. Laser & Photonics Reviews, 2013, 7(3): 303-328.

【39】Augustin L M, van der Tol J J G M, Hanfoug R, et al. A single etch-step fabrication-tolerant polarization splitter[J]. Journal of Lightwave Technology, 2007, 25(3): 740-746.

【40】Dai D X. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides[J]. Journal of Lightwave Technology, 2012, 30(20): 3281-3287.

【41】Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler[J]. Optics Express, 2011, 19(19): 18614-18620.

【42】Wang J, Liang D, Tang Y B, et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler[J]. Optics Letters, 2013, 38(1): 4-6.

【43】Komatsu M, Saitoh K, Koshiba M. Design of miniaturized silicon wire and slot waveguide polarization splitter based on a resonant tunneling[J]. Optics Express, 2009, 17(21): 19225-19233.

【44】Dai D X, Wang Z, Bowers J E. Ultra-short broad-band polarization beam splitter based on an asymmetrical directional coupler[J]. Optics Letters, 2011, 36(13): 2590-2592.

【45】Lin S Y, Hu J J, Crozier K B. Ultracompact, broadband slot waveguide polarization splitter[J]. Applied Physics Letters, 2011, 98(15): 151101.

【46】Lou F, Dai D X, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler[J]. Optics Letters, 2012, 37(16): 3372-3374.

【47】Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Optics Express, 2009, 17(19): 16646-16653.

【48】Chee J, Zhu S Y, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide[J]. Optics Express, 2012, 20(23): 25345-25355.

【49】Guan X W, Wu H, Shi Y C, et al. Ultra-compact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Optics Letters, 2013, 38(16): 3005-3008.

【50】Almeida V R, Xu Q, Barrios C A, et al. Guiding and confining light in void nanostructure[J]. Optics Letters, 2004, 29(11): 1209-1211.

【51】Song Y, Wang J, Li Q, et al. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide[J]. Optics Express, 2010, 18(12): 13173-13179.

【52】Dai D X. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light[C]. Asia Communications and Photonics Conference, 2012: ATh3B.3.

【53】Sorin W, Kim B, Shaw H. Highly selective evanescent modal filter for two-mode optical fibers[J]. Optics Letters, 1986, 11(9): 581-583.

【54】Li A, Chen X, Al Amin A, et al. Fused fiber mode couplers for few-mode transmission[J]. IEEE Photonics Technology Letters, 2012, 24(21): 1953-1956.

【55】Wohlfeil B, Stamatiadis C, Zimmermann L, et al. Compact fiber grating coupler on SOI for coupling of higher order fiber modes[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013: OTh1B. 2.

【56】Ding Y H, Ou H Y, Xu J, et al. Silicon photonic integrated circuit mode multiplexer[J]. IEEE Photonics Technology Letters, 2013 25(7): 648-651.

【57】Koonen A M J, Chen H S, Boom H P, et al. Silicon photonic integrated mode multiplexer and demultiplexer[J]. IEEE Photonics Technology Letters, 2012, 24(21): 1961-1964.

【58】Xuan Hejun, Wang Yuping, Xu Zhanqi, et al. Core selection algorithm for multi-core elastic optical networks[J]. Acta Optica Sinica, 2016, 36(12): 1206005.
宣贺君, 王宇平, 徐展琦, 等. 多纤芯弹性光网络中纤芯选择算法[J]. 光学学报, 2016, 36(12): 1206005.

【59】Hanzawa N, Saitoh K, Sakamoto T, et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division mul-tiplexed transmission[J]. Optics Express, 2013, 21(22): 25752-25760.

【60】Huang Y Y, Xu G Y, Ho S T. An ultracompact optical mode order converter[J]. IEEE Photonics Technology Letters, 2006, 18(21): 2281-2283.

【61】Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission[J]. Journal of Lightwave Technology. 2012, 30(15): 2421-2426.

【62】Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling[J]. Optics Express, 2005, 13(23): 9381-9387.

【63】Greenberg M, Orenstein M. Mode add drop for optical interconnects based on adiabatic high order mode couplers[C]. Quantum Electronics and Laser Science Conference, 2005, 2: 942-944.

【64】Xing J J, Li Z Y, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers[J]. Optics Letters, 2013, 38(17): 3468-3470.

【65】Love J D, Vance RW C, Joblin A. Asymmetric, adiabatic multipronged planar splitters[J]. Optical and Quantum Electronics, 1996, 28(4): 353-369.

【66】Lee B, Shin S. Mode-order converter in a multimode waveguide[J]. Optics Letters, 2003, 28(18): 1660-1662.

【67】Low A L Y, Yong Y S, You A H, et al. A five-order mode converter for multimode waveguide[J]. IEEE Photonics Technology Letters, 2004, 16(7): 1673-1675.

【68】Riesen N, Love J D. Spatial mode-division-multiplexing of few-mode fiber[C]. European Conference and Exhibition on Optical Communication, 2012: P2. 14.

【69】Nicolas R, Love J D. Design of mode-sorting asymmetric Y-junctions[J]. Applied Optics, 2012, 51(15): 2778-2783.

【70】Driscoll J, Grote R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing[J]. Optics Letters, 2013, 38(11): 1854-1856.

【71】Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions[J]. Optics Express, 2013, 21(21): 25113-25119.

【72】Fu Peidong, Chen Heming. Design and performance analysis of three-mode division multi/demultiplexer based on two-dimensional photonic crystals[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020602.
付培栋, 陈鹤鸣. 基于光子晶体三模式模分复用/解复用器的设计与性能分析[J]. 激光与光电子学进展, 2017, 54(2): 020602.

【73】Bagheri S, Green W M J. Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing[C]. The 6th IEEE International Conference on Group IV Photonics, 2009: 166-168.

【74】Dai D X, Wang J, Shi Y C. Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light[J]. Optics Letters, 2013, 38(9): 1422-1424.

【75】Qiu H Y, Yu H, Hu T, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers[J]. Optics Express, 2013, 21(15): 17904-17911.

【76】Luo L, Ophir N, Chen C, et al. Simultaneous mode and wavelength division multiplexing on-chip[J]. Physics, 2013: arXiv: 1306. 2378.

【77】Ding Y H, Xu J, Ros F D, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 2013, 21(8): 10376-10382.

【78】Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode- and polarization-division-multiplexing[J]. Laser & Photonics Reviews, 2014, 8(2): L18-L22.

引用该论文

Li Chenlei,Dai Daoxin. Mode Conversion and Coupling in Silicon-Based Nanometer Photonic Integrated Circuits[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050003

李晨蕾,戴道锌. 硅基纳米光子集成回路中的模式转换与耦合[J]. 激光与光电子学进展, 2017, 54(5): 050003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF