首页 > 论文 > 激光与光电子学进展 > 54卷 > 5期(pp:50002--1)

表面等离激元的传播操控:从波束调制到近场全息

Manipulating Surface Plasmon Propagation: From Beam Modulation to Near-Field Holography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

表面等离激元是一种存在金属与介质界面的电磁模式, 具有亚波长传播和局域场增强的特性, 因而受到人们的青睐, 作为在微纳尺度下进行光子操纵和集成的优良载体。随着人们对表面等离激元认识的不断深入和对微纳光子器件应用需求的增加, 如何在近场范围内精确调控等离激元波的传播并实现特定的场强分布成为人们关注的热点。综述人们通过微纳结构对等离激元波进行操控所发展的新原理和新方法, 以及对波束性质和近场分布调控的研究进展; 重点介绍包括艾里波束、无衍射准直波束、角向贝塞尔波束在内的各类特殊等离激元波束的基本特性, 产生与调控的实现, 以及近年来拓展的近场全息技术; 并进一步探讨表面等离激元光场调控在新型微纳光子学器件中的可能应用。

Abstract

Surface plasmon polariton (SPP) is a kind of electromagnetic mode confined at the interface of metal and dielectric, and it is expected to be a good carrier for photonic arrangement and integration in micro/nano scale owing to its strong field enhancement and confinement properties. Along with the deep understanding of SPP properties and the increasing requirement for developing micro/nano optical devices, how to precisely control the propagation of SPP waves and realize the specific distribution of near-field intensity has become the focus. We review the new principles and methods of manipulating the SPP beams by micro/nano structures, and the enhanced ability to control the beam property and the near-field distribution. The basic characteristics, the generation and the control of the special plasmon beams, including Airy beams, diffraction-free collimating beams and angular Bessel beams, are mainly addressed, which has been extended to near-field holography recently. The possible applications of novel micro/nano photonics devices based on SPP manipulation are discussed as well.

中国激光微信矩阵
补充资料

中图分类号:O436

DOI:10.3788/lop54.050002

所属栏目:综述

基金项目:国家重大科学研究计划(2012CB921501)、国家自然科学基金(11322439, 11674167, 11621091)、南京大学登峰人才支持计划

收稿日期:2016-12-01

修改稿日期:2017-01-04

网络出版日期:--

作者单位    点击查看

李涛:南京大学固体微结构物理国家重点实验室, 现代工程与应用科学学院,人工微结构科学与技术协同创新中心, 江苏 南京 210093
陈绩:南京大学固体微结构物理国家重点实验室, 现代工程与应用科学学院,人工微结构科学与技术协同创新中心, 江苏 南京 210093
祝世宁:南京大学固体微结构物理国家重点实验室, 现代工程与应用科学学院,人工微结构科学与技术协同创新中心, 江苏 南京 210093

联系人作者:李涛(taoli@nju.edu.cn)

备注:李涛(1978-), 男, 博士, 教授, 博士生导师, 主要从事微纳光学, 等离激元光子学, 亚波长光子集成, 非线性光学和量子光学等方面的研究。

【1】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【2】Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

【3】Maier S A. Plasmonics: fundamentals and applications[M]. Cham: Springer Science & Business Media, 2007.

【4】Gu Benyuan. Surface plasmon subwavelength optics: principles and novel effects[J]. Physics, 2007, 36(4): 280-287.
顾本源. 表面等离子体亚波长光学原理和新颖效应[J]. 物理, 2007, 36(4): 280-287.

【5】Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3) : 287-324.
王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324.

【6】Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

【7】Tong Lianming, Xu Hongxing. Surface plasmons--mechanisms, applications and perspectives[J]. Physics, 2012, 41(9): 582-588.
童廉明, 徐红星. 表面等离激元--机理, 应用与展望[J]. 物理, 2012, 41(9): 582-588.

【8】Mei Ting, Yang Dong, Zhang Hui, et al. Manipulating surface plasmon polaritons: principles and research progress[J]. Journal of South China Normal University (Natural Science Edition), 2013 , 45(2): 1-11.
梅 霆, 杨 东, 张 辉, 等. 表面等离激元的操控: 原理与研究进展[J]. 华南师范大学学报(自然科学版), 2013, 45(2): 1-11.

【9】Ren Mengxin, Xu Jingjun. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.
任梦昕, 许京军. 表面等离子体激元增强非线性的原理及应用[J]. 激光与光电子学进展, 2013, 50(8): 080002.

【10】Xu H, Bjerneld E J, Kll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 1999, 83(21): 4357-4360.

【11】Pettinger B, Ren B, Picardi G, et al. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy[J]. Physical Review Letters, 2004, 92(9): 096101.

【12】Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Physical Review Letters, 2008, 100(2): 023901.

【13】Kinkhabwala A, Yu Z F, Fan S H, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

【14】Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267.

【15】Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

【16】Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981.

【17】Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209.

【18】Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams[J]. Optics Express, 2008, 16(17): 12880-12891.

【19】Carretero L, Acebal P, Blaya S, et al. Nonparaxial diffraction analysis of Airy and SAiry beams[J]. Optics Express, 2009, 17(25): 22432-22441.

【20】Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons[J]. Physical Review Letters, 1996, 77(9): 1889-1892.

【21】Wang B, Aigouy L, Bourhis E, et al. Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence[J]. Applied Physics Letters, 2009, 94(1): 011114.

【22】Hooper I R, Sambles J R. Dispersion of surface plasmon polaritons on short-pitch metal gratings[J]. Physical Review B, 2002, 65(16): 165432.

【23】Kano H, Mizuguchi S, Kawata S. Excitation of surface-plasmon polaritons by a focused laser beam[J]. Journal of the Optical Society of America B, 1998, 15(4): 1381-1386.

【24】Courjon D, Bainier C. Near field microscopy and near field optics[J]. Reports on Progress in Physics, 1994, 57(10): 989-1028.

【25】Liu Z, Steele J M, Lee H, et al. Tuning the focus of a plasmonic lens by the incident angle[J]. Applied Physics Letters, 2006, 88(17): 171108.

【26】Drezet A, Hohenau A, Koller D, et al. Leakage radiation microscopy of surface plasmon polaritons[J]. Materials Science and Engineering B, 2008, 149(3): 220-229.

【27】González M U, Weeber J C, Baudrion A L, et al. Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors[J]. Physical Review B, 2006, 73(15): 155416.

【28】Ditlbacher H, Krenn J R, Schider G, et al. Two-dimensional optics with surface plasmon polaritons[J]. Applied Physics Letters, 2002, 81(10): 1762-1764.

【29】Yin L, Vlasko-Vlasov V K, Pearson J, et al. Subwavelength focusing and guiding of surface plasmons[J]. Nano Letters, 2005, 5(7): 1399-1402.

【30】Song W, Fang Z, Huang S, et al. Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens[J]. Optics Express, 2010, 18(14): 14762-14767.

【31】Fang Z, Peng Q, Song W, et al. Plasmonic focusing in symmetry broken nanocorrals[J]. Nano Letters, 2010, 11(2): 893-897.

【32】Li J, Yang C, Li J, et al. Plasmonic focusing in nanostructures[J]. Plasmonics, 2014, 9(4): 879-886.

【33】Yang S, Chen W, Nelson R L, et al. Miniature circular polarization analyzer with spiral plasmonic lens[J]. Optics Letters, 2009, 34(20): 3047-3049.

【34】Chen W, Abeysinghe D C, Nelson R L, et al. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer[J]. Nano Letters, 2010, 10(6): 2075-2079.

【35】Chen W, Nelson R L, Zhan Q. Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens[J]. Optics Letters, 2012, 37(9): 1442-1444.

【36】Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface[J]. Nano Letters, 2015, 15(4): 2746-2750.

【37】Tsai W Y, Huang J S, Huang C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552.

【38】Yin X, Ye Z, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

【39】Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light[J]. Nano Letters, 2013, 13(9): 4148-4151.

【40】Xiao S, Zhong F, Liu H, et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 2015, 6: 8360.

【41】Yuan G H, Yuan X C, Bu J, et al. Manipulation of surface plasmon polaritons by phase modulation of incident light[J]. Optics Express, 2011, 19(1): 224-229.

【42】Zhao C, Wang J, Wu X, et al. Focusing surface plasmons to multiple focal spots with a launching diffraction grating[J]. Applied Physics Letters, 2009, 94(11): 111105.

【43】Zhao C, Zhang J. Binary plasmonics: launching surface plasmon polaritons to a desired pattern[J]. Optics Letters, 2009, 34(16): 2417-2419.

【44】Zhao C, Zhang J. Plasmonic demultiplexer and guiding[J]. ACS Nano, 2010, 4(11): 6433-6438.

【45】Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler[J]. Nano Letters, 2011, 11(7): 2693-2698.

【46】Hohenau A, Krenn J R, Stepanov A L, et al. Dielectric optical elements for surface plasmons[J]. Optics Letters, 2005, 30(8): 893-895.

【47】Feng L, Tetz K A, Slutsky B, et al. Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves[J]. Applied Physics Letters, 2007, 91(8): 081101.

【48】Fang Z, Lu Y, Fan L, et al. Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure[J]. Plasmonics, 2010, 5(1): 57-62.

【49】Li L, Li T, Wang S M, et al. Plasmonic Airy beam generated by in-plane diffraction[J]. Physical Review Letters, 2011, 107(12): 126804.

【50】Li L, Li T, Wang S M, et al. Broad band focusing and demultiplexing of in-plane propagating surface plasmons[J]. Nano Letters, 2011, 11(10): 4357-4361.

【51】L Li, Li T, Wang S M, et al. Steering plasmon beam from a point source[J]. Optics Letters, 2012, 37(24): 5091-5093.

【52】Cheng Q Q, Li T, Li L, et al. Mode division multiplexing in a polymer-loaded plasmonic planar waveguide[J]. Optics Letters, 2014, 39(13): 3900-3902.

【53】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

【54】John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

【55】Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.

【56】Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

【57】Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

【58】Stein B, Devaux E, Genet C, et al. Self-collimation of surface plasmon beams[J]. Optics Letters, 2012, 37(11): 1916-1918.

【59】Durnin J, Miceli J J Jr, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.

【60】Thaning A, Jaroszewicz Z, Friberg A T. Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons[J]. Applied Optics, 2003, 42(1): 9-17.

【61】Bin Z, Zhu L. Diffraction property of an axicon in oblique illumination[J]. Applied Optics, 1998, 37(13): 2563-2568.

【62】Tanaka T, Yamamoto S. Comparison of aberration between axicon and lens[J]. Optics Communications, 2000, 184(1): 113-118.

【63】Vasara A, Turunen J, Friberg A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, 1989, 6(11): 1748-1754.

【64】Davis J A, Carcole E, Cottrell D M. Nondiffracting interference patterns generated with programmable spatial light modulators[J]. Applied Optics, 1996, 35(4): 599-602.

【65】Davis J A, Carcole E, Cottrell D M. Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator[J]. Applied Optics, 1996, 35(4): 593-598.

【66】Lin J, Dellinger J, Genevet P, et al. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave[J]. Physical Review Letters, 2012, 109(9): 093904.

【67】Wei S, Lin J, Wang Q, et al. Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources[J]. Optics Letters, 2013, 38(7): 1182-1184.

【68】Li L, Li T, Wang S M, et al. Collimated plasmon beam: nondiffracting versus linearly focused[J]. Physical Review Letters, 2013, 110(4): 046807.

【69】Sztul H I, Alfano R R. The Poynting vector and angular momentum of Airy beams[J]. Optics Express, 2008, 16(13): 9411-9416.

【70】Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, et al. Nonlinear generation and manipulation of Airy beams[J]. Nature Photonics, 2009, 3(7): 395-398.

【71】Cottrell D M, Davis J A, Hazard T M. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern[J]. Optics Letters, 2009, 34(17): 2634-2636.

【72】Liu W, Neshev D N, Shadrivov I V, et al. Plasmonic Airy beam manipulation in linear optical potentials[J]. Optics Letters, 2011, 36(7): 1164-1166.

【73】Hu Y, Zhang P, Lou C, et al. Optimal control of the ballistic motion of Airy beams[J]. Optics Letters, 2010, 35(13): 2260-2262.

【74】Wang J, Bu J, Wang M, et al. Generation of high quality Airy beams with blazed micro-optical cubic phase plates[J]. Applied Optics, 2011, 50(36): 6627-6631.

【75】Cao R, Yang Y, Wang J, et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency[J]. Applied Physics Letters, 2011, 99(26): 261106.

【76】Salandrino A, Christodoulides D N. Airy plasmon: a nondiffracting surface wave[J]. Optics Letters, 2010, 35(12): 2082-2084.

【77】Zhang P, Wang S, Liu Y, et al. Plasmonic Airy beams with dynamically controlled trajectories[J]. Optics Letters, 2011, 36(16): 3191-3193.

【78】Minovich A, Klein A E, Janunts N, et al. Generation and near-field imaging of Airy surface plasmons[J]. Physical Review Letters, 2011, 107(11): 116802.

【79】Klein A E, Minovich A, Steinert M, et al. Controlling plasmonic hot spots by interfering Airy beams[J]. Optics Letters, 2012, 37(16): 3402-3404.

【80】Kaminer I, Bekenstein R, Nemirovsky J, et al. Nondiffracting accelerating wave packets of Maxwell′s equations[J]. Physical Review Letters, 2012, 108(16): 163901.

【81】Zhang P, Hu Y, Li T, et al. Nonparaxial Mathieu and Weber accelerating beams[J]. Physical Review Letters, 2012, 109(19): 193901.

【82】Kaganovsky Y, Heyman E. Wave analysis of Airy beams[J]. Optics Express, 2010, 18(8): 8440-8452.

【83】Froehly L, Courvoisier F, Mathis A, et al. Arbitrary accelerating micron-scale caustic beams in two and three dimensions[J]. Optics Express, 2011, 19(17): 16455-16465.

【84】Epstein I, Arie A. Arbitrary bending plasmonic light waves[J]. Physical Review Letters, 2014, 112(2): 023903.

【85】Libster-Hershko A, Epstein I, Arie A. Rapidly accelerating Mathieu and Weber surface plasmon beams[J]. Physical Review Letters, 2014, 113(12): 123902.

【86】Epstein I, Lilach Y, Arie A. Shaping plasmonic light beams with near-field plasmonic holograms[J]. Journal of the Optical Society of America B, 2014, 31(7): 1642-1647.

【87】Epstein I, Tsur Y, Arie A. Surface-plasmon wavefront and spectral shaping by near-field holography[J]. Laser & Photonics Reviews, 2016, 10(3): 360-381.

【88】Minovich A E, Klein A E, Neshev D N, et al. Airy plasmons: non-diffracting optical surface waves[J]. Laser & Photonics Reviews, 2014, 8(2): 221-232.

【89】Chen Zhigang, Xu Jingjun, Hu Yi, et al. Control and novel applications of self-accelerating beams[J]. Acta Optica Sinica, 2016, 36(10): 1026009.
陈志刚, 许京军, 胡 毅, 等. 自加速光的调控及其新奇应用[J]. 光学学报, 2016, 36(10): 1026009.

【90】Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

【91】Chen Y H, Huang L, Gan L, et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light: Science and Applications, 2012, 1(8): e26.

【92】Chen Y H, Zhang M, Gan L, et al. Holographic plasmonic lenses for surface plasmons with complex wavefront profile[J]. Optics Express, 2013, 21(15): 17558-17566.

【93】Genevet P, Lin J, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278.

【94】Dolev I, Epstein I, Arie A. Surface-plasmon holographic beam shaping[J]. Physical Review Letters, 2012, 109(20): 203903.

【95】Epstein I, Remez R, Tsur Y, et al. Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media[J]. Optica, 2016, 3(1): 15-19.

【96】Chen Y G, Chen Y H, Li Z Y. Direct method to control surface plasmon polaritons on metal surfaces[J]. Optics Letters, 2014, 39(2): 339-342.

【97】Chen Y G, Yang F Y, Liu J, et al. Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns[J]. Optics Express, 2014, 22(12): 14727-14737.

【98】Chen J, Li L, Li T, et al. Indefinite plasmonic beam engineering by in-plane holography[J]. Scientific Reports, 2016, 6: 28926.

【99】Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

【100】Yu N, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.

【101】Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

【102】Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

【103】Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

【104】Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens′ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820.

【105】Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

【106】Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2013, 14(1): 225-230.

【107】Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays[J]. Nano Letters, 2014, 14(5): 2485-2490.

【108】Khorasaninejad M, Ambrosio A, Kanhaiya P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258.

【109】Huang L, Mühlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449.

【110】Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127.

【111】Choudhury S, Shaltout A, Shalaev V M, et al. Color hologram generation using a Pancharatnam-Berry phase manipulating metasurface[C]. CLEO: Applications and Technology, Optical Society of America, 2015: JTu5A.89.

【112】Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12679-12683.

【113】Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

【114】Wang B, Dong F, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240.

【115】Zhao W, Liu B, Jiang H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J]. Optics Letters, 2016, 41(1): 147-150.

【116】Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505.

【117】Tang X M, Li L, Li T, et al. Converting surface plasmon to spatial Airy beam by graded grating on metal surface[J]. Optics Letters, 2013, 38(10): 1733-1735.

【118】Guan C, Ding M, Shi J, et al. Compact all-fiber plasmonic Airy-like beam generator[J]. Optics Letters, 2014, 39(5): 1113-1116.

【119】Li L, Li T, Tang X, et al. Plasmonic polarization generator in well-routed beaming[J]. Light: Science and Applications, 2015, 4(9): e330.

【120】Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

【121】Wang Yue, Wang Xuan, Li Longwei, Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.
王 玥, 王 暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

【122】Dou Xiujie, Min Changjun, Zhang Yuquan, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004.
豆秀婕, 闵长俊, 张聿全, 等. 表面等离激元光镊技术[J]. 光学学报, 2016, 36(10): 1026004.

引用该论文

Li Tao,Chen Ji,Zhu Shining. Manipulating Surface Plasmon Propagation: From Beam Modulation to Near-Field Holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050002

李涛,陈绩,祝世宁. 表面等离激元的传播操控:从波束调制到近场全息[J]. 激光与光电子学进展, 2017, 54(5): 050002

被引情况

【1】石鑫,孙诚,王晓秋. 适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构. 激光与光电子学进展, 2018, 55(1): 10501--1

【2】陈佳琦,袁国秋,王孟,曹敏. 表面等离激元受激辐射方向性调控研究进展. 激光与光电子学进展, 2018, 55(3): 30007--1

【3】蔡昕旸,王新伟,李如雪,王登魁,方铉,房丹,张玉苹,孙秀平,王晓华,魏志鹏. ITO薄膜表面等离子体共振波长的可控调节. 激光与光电子学进展, 2018, 55(5): 51602--1

【4】吴仍来,全军,阳喜元,肖世发,薛红杰. 一维体系等离激元的偶极和四极模式的激发与调控特性. 激光与光电子学进展, 2018, 55(7): 72501--1

【5】赖淑妹,黄志伟,王仰江,陈松岩. Ag纳米结构局域表面等离激元共振模拟与分析. 激光与光电子学进展, 2018, 55(12): 122601--1

【6】张明偲,姜美玲,冯紫微,欧阳旭,曹耀宇,李向平. 等离激元纳米材料超快激光光热形变原理及应用. 激光与光电子学进展, 2020, 57(11): 111401--1

【7】智婷,陶涛,刘斌,张荣. 表面等离激元半导体纳米激光器. 中国激光, 2020, 47(7): 701010--1

【8】黄恺健,李世雄,白忠臣,张正平,秦水介. 基于金属纳米结构非局域与尺寸效应的表面等离激元特性研究. 激光与光电子学进展, 2019, 56(20): 202414--1

【9】刘钊杰,肖康,李文文,田立君,王中阳. 超分辨拉曼散射成像的偏振调控理论分析. 激光与光电子学进展, 2019, 56(20): 202412--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF