首页 > 论文 > 激光与光电子学进展 > 54卷 > 5期(pp:50007--1)

直接抽运中红外固体激光器研究进展

Progress in Directly Pumping of Mid-Infrared Solid-State Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

3~5 μm中红外辐射位于大气传输窗口, 具有广泛的应用前景。目前, 固体激光器获得3~5 μm中红外辐射的途径主要是基于光参量振荡(OPO)的方法。与之相比, 以直接抽运为代表的新型中红外固体激光器在总体设计原理和激光器结构上都更为简单。目前, 随着相关晶体材料和对应抽运源的逐步成熟, 直接抽运中红外激光器迅速发展。总结了以Fe∶ZnSe、Ho∶BYF和Dy∶PGS三种晶体材料为代表的直接抽运中红外固体激光器, 详细介绍了其关键技术和国内外主要研究进展, 分析了其发展的重点和难点。

Abstract

Mid-infrared (3-5 μm) is in the range of atmospheric transmission window, which has broad application prospects. So far, the main way to obtain the mid-infrared radiation by solid-state lasers is based on the optical parameter oscillator (OPO) technology. The design principle and structures of new type mid-infrared lasers, especially directly pumping of mid-infrared lasers are not so complicated compared with OPO. With the development of crystal material and relevant pump sources, the directly pumping of mid-infrared lasers develops rapidly. Directly pumping of mid-infrared lasers, their key techniques and recent research advances, represented by Fe∶ZnSe laser, Ho∶BYF laser and Dy∶PGS laser, are summarized. The key and difficult points are analyzed at last.

投稿润色
补充资料

中图分类号:TN248.1

DOI:10.3788/lop54.050007

所属栏目:综述

收稿日期:2016-12-20

修改稿日期:2017-01-12

网络出版日期:--

作者单位    点击查看

孙骁:华北光电技术研究所固体激光器技术重点实验室, 北京 100015
韩隆:华北光电技术研究所固体激光器技术重点实验室, 北京 100015
王克强:华北光电技术研究所固体激光器技术重点实验室, 北京 100015

联系人作者:孙骁(diamondsxsx@126.com)

备注:孙骁(1990-), 男, 硕士, 工程师, 主要从事固体激光器方面的研究。

【1】Dong Yijing, Ma Xiuhua, Li Shiguang, et al. 3-5 μm optical parametric oscillator technology[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090004.
董怡静, 马秀华, 李世光, 等. 3~5 μm光参量振荡技术进展研究[J]. 激光与光电子学进展, 2016, 53(9): 090004.

【2】Peng Yapei, Jiang Benxue, Fan Jintai, et al. Review of in mid-infrared laser materials directly pumped by laser-diode[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020001.
彭雅珮, 姜本学, 范金太, 等. 激光二极管直接抽运中红外固体激光材料综述[J]. 激光与光电子学进展, 2015, 52(2): 020001.

【3】Fan Jinxiang. Status quo and trend of infrared system and technologies for America′s ballistic missile defense system[J]. Infrared and Laser Engineering, 2006, 35(5): 536-550.
范晋祥. 美国弹道导弹防御系统的红外系统与技术的发展[J]. 红外与激光工程, 2006, 35(5): 536-550.

【4】Liu Lei, Li Xiao, Liu Tong, et al. Progress of mid-infrared continuous-wave optical parametric oscillation technique[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060002.
刘 磊, 李 霄, 刘 通, 等. 中红外连续波光学参变振荡技术研究进展[J]. 激光与光电子学进展, 2012, 49(6): 060002.

【5】Creeden D, Ketteridge P A, Budni P A, et al. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 μm Tmdoped fiber laser[J]. Optics Letter, 2008, 33(4): 315-317.

【6】Hemming A, Richards J, Bennetts S, et al. A high power hybrid mid-IR laser source[J]. Optics Communication, 2010, 283(20): 4041-4045.

【7】Ji Encai, Wang Lu, Liu Qiang, et al. Review of mid-infrared Ho∶BYF laser with direct pumping method[J]. China Science Paper, 2015, 10(5): 503-507.
吉恩才, 汪 露, 柳 强, 等. 直接泵浦中红外Ho∶YF激光器综述[J]. 中国科技论文, 2015, 10(5): 503-507.

【8】Li Y F, Yao B Q, Wang Z G. Tunable CW Tm, Ho∶YLF laser at 2 μm[J]. Chinese Optics Letters, 2006, 4(8): 470-471.

【9】Wei Lei, Xiao Lei, Han Long, et al. ZGP optical parametric oscillator pumped by Tm∶YAP laser[J]. Chinese J Lasers, 2012, 39(7): 0702006.
魏 磊, 肖 磊, 韩 隆, 等. Tm∶YAP激光抽运ZGP晶体光参量振荡器[J]. 中国激光, 2012, 39(7): 0702006.

【10】Peng Y F, Wei X, Wang W M, et al. High-power 3.8 μm tunable optical parametric oscillator based on PPMgO∶CLN[J]. Optics Communications, 2010, 283(20): 4032-4035.

【11】Han Long, Yuan Ligang, Chen Guo, et al. 26 W mid-infrared solid-state laser[J]. Chinese J Lasers, 2015, 42(3): 0302004.
韩 隆, 苑利钢, 陈 国, 等. 26 W中波红外固体激光器[J]. 中国激光, 2015, 42(3): 0302004.

【12】Wang Ying, Luo Zhengqian, Xiong Fengfu, et al. Numerical optimization of 3-5 μm mid-infrared ZBLAN fiber Raman lasers[J]. Laser & Optoelectronics Progress, 2014, 51(6): 061405.
王 莹, 罗正钱, 熊凤福, 等. 数值优化3~5 μm中红外ZBLAN光纤拉曼激光器的研究[J]. 激光与光电子学进展, 2014, 51(6): 061405.

【13】Hao Zhijian, Lei Dajun, Zhao Chujun, et al. Generation of mid-infrared supercontinuum in two cascaded fibers[J]. Chinese J Lasers, 2011, 38(1): 0105009.
郝志坚, 雷大军, 赵楚军, 等. 两级光纤中的中红外超连续谱产生[J]. 中国激光, 2011, 38(1): 0105009.

【14】Ke Changjun, Kong Xinyi, Wang Ran, et al. Research progress on mid-IR Fe∶ZnSe laser technology[J]. Infrared and Laser Engineering, 2016, 45(3): 136-142.
柯常军, 孔心怡, 王 然, 等. 中红外Fe∶ZnSe激光技术最新研究进展[J]. 红外与激光工程, 2016, 45(3): 136-142.

【15】Pan Qikun. Progress of mid-infrared solid-state laser[J]. Chinese Optics, 2015, 8(4): 557-566.
潘其坤. 中红外固体激光器研究进展[J]. 中国光学, 2015, 8(4): 557-566.

【16】Kernal J, Fedorov V V, Gallian A, et al. 3.9-4.8 μm gain switched lasing of Fe∶ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615.

【17】Voronov A A, Kozlovskii V I, Korostelin Y V, et al. A continuous-wave Fe2+∶ZnSe laser[J]. Quantum Electron, 2008, 38(12): 1113-1116.

【18】Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722.

【19】Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient IR Fe∶ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 microns[J]. Quantum Electron, 2004, 34(10): 912-914.

【20】Voronov A A, Kozlovskii V I, Korostelin Y V, et al. Laser parameters of a Fe∶ZnSe laser crystal in the 85-255 K temperature range[J]. Quantum Electron, 2005, 35(9): 809-812.

【21】Fedorov V V, Martyshkin D V, Mirov M, et al. High energy 4.1-4.6 μm Fe∶ZnSe laser[J]. Lasers & Electro-Optics, 2012: 1-2.

【22】Xia Shixing, Mo Xiaogang, Li Xingwang, et al. Preparation and optical absorption of Fe2+∶ZnSe crystal[J]. Journal of Synthetic Crystals, 2013, 42(10): I0002.
夏士兴, 莫小刚, 李兴旺, 等. Fe2+∶ZnSe晶体制备及光学吸收[J]. 人工晶体学报, 2013, 42(10): I0002.

【23】王向永, 徐 民, 张连翰, 等. 热扩散法制备Fe2+∶ZnSe激光材料及其激光性能[C]. 北京: 全国晶体生长与材料学术会议. 2015.

【24】Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient lasing in a Fe2+∶ZnSe crystal at room temperature[J]. Quantum Electron, 2006, 36(4): 299-301.

【25】Doroshenko M E, Jelnkov H, Koranda P, et al. Tunable mid-infrared laser properties of Cr2+∶ZnMgSe and Fe2+∶ZnSe crystal[J]. Laser Physics Letters, 2010, 7(1): 38-45.

【26】Kozlovsky V I, Akimov V A, Frolov M P, et al. Room temperature tunable mid-infrared lasers on transition-metaldoped II-VI compound crystals grown from vapor phase[J]. Physica Status Solidi B, 2010, 247(6): 1553-1556.

【27】Myoung N, Martyshkin D V, Fedorov V V, et al. Energy scaling of 4.3 μm room temperature Fe∶ZnSe laser[J]. Optics Letters, 2011, 36(1): 94-96.

【28】Doroshenko M E, Jelinkova H, Basiev T T, et al. Fe∶ZnSe laser comparison of active materials grown by two different methods[C]. SPIE, 2011, 7912: 79122D.

【29】Fedorov V V, Martyshkin D, Mirov M, et al. Fe-doped II-VI mid-infrared laser materials for the 3 to 8 μm region[C]. CLEO: Science and Innovations, 2013, 23(4): 7946-7956.

【30】Evans J W, Berry P A, Schepler L L. 840 mW continuous wave Fe∶ZnSe laser operating at 4140 nm[J]. Optics Letters, 2012, 37(23): 5021-5023.

【31】Frolov M P, Korostelin Y V, Kozlovsky V I, et al. Study of a 2 J pulsed Fe∶ZnSe 4 μm laser[J]. Laser Physics Letters, 2013, 10(12): 125001.

【32】Velikanov S D, Danilov V P, Zakharov N G, et al. Fe2+∶ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electron, 2014, 44 (2): 141-144.

【33】Firsov K N, Gavrishchuk E M, Kazantsev S Yu, et al. Increasing the radiation energy of ZnSe: Fe2+ laser at room temperature[J]. Laser Physics Letter, 2014, 11(8): 085001.

【34】Evans J W, Berry P A, Schepler K L. A passively Q-switched, CW-pumped Fe∶ZnSe laser[J]. IEEE Journal of Quanturm Electronics, 2014, 50(3): 204-209.

【35】Martyshkin D V, Fedorov V V, Mirov M, et al. High average power (35 W) pulsed Fe∶ZnSe laser tunable over 3.8-4.2 μm[C]. Lasers and Electro-Optics, IEEE, 2015: 1-2.

【36】Velikanov S D, Zakharov N G, Zotov. E. A, et al. Room-temperature 1.2 J Fe∶ZnSe laser[J]. Quantum Electronics, 2016, 46(1): 11-12.

【37】姚宝权, 夏士兴, 于快快, 等. Fe2+∶ZnSe实现中红外波段激光输出[J]. 中国激光, 2015, 42(1): 0119001.

【38】柯常军, 王 然, 王向永, 等. 室温Fe2+∶ZnSe激光器获得15 mJ中红外激光输出[J]. 中国激光, 2015, 42(2): 0219004.

【39】Jie C, Liu Q, Nie M M, et al. Spectroscopic properties of heavily Ho-doped barium yttrium fluoride crystals[J]. Chinese Physics B, 2015 (9): 299-306.

【40】Schneider J, Carbonnier C, Unrau U. Characterization of a Ho3+-doped fluoride fibre laser with a 3.9 μm emission wavelength[J]. Applied Optics, 1997, 36(33): 8595-8600.

【41】Luo Hui, Qi Lu, Zhu Shifu, et al. Study of growth and spectrum of Ho∶BaY2F8 crystals[J]. Journal of Synthetic Crystals, 2012, 41(6): 1502-1509.
罗 辉, 亓 鲁, 朱世富, 等. Ho∶BaY2F8晶体生长及其光谱研究[J]. 人工晶体学报, 2012, 41(6): 1502-1509.

【42】Luo H, Guan Z, He Z, et al. Investigation on growth and defects of Ho3+∶BaY2F8, crystals grown by Czochralski method[J]. Journal of Alloys and Compounds, 2015, 648: 803-808.

【43】刘 旺, 董玮利, 王殿巍, 等. 共沉淀法合成Ho∶BaY2F8粉体的研究[J]. 长春理工大学学报自然科学版, 2015, 38(5): 76-79.

【44】Li C, Zeng F, Lin H, et al. Optical spectroscopy of low-phonon Ho3+ doped BaY2F8 single crystal[J]. Russian Journal of Physical Chemistry A, 2014, 88(12): 2260-2264.

【45】Tabirian A M, Jenssen B P, Cassanho A. Efficient, room temperature mid-infrared laser at 3.9 μm in Ho: BaY2F8[J]. Advanced Solid-State Lasers, 2001, 5: 5F4.

【46】Stutz R, Miller H, Dinndorf K, et al. High pulse energy 3.9 μm lasers in Ho∶ BYF[C]. SPIE, 2004, 5332: 111-119.

【47】Basiev T T, Doroshenko M E, Osiko V V, et al. Mid IR laser oscillations in new low phonon PbGa2S4: Dy3+ crystal[C]. Advanced Solid-State Photonics, 2005.

【48】Doroshenko M E, Basiev T T, Osiko V V, et al. Oscillation properties of dysprosium-doped lead thiogallate crystal[J]. Optics Letters, 2009, 34(5): 590-592 .

【49】Sulc J, Jelínková H, Doroshenko M E, et al. Dysprosium-doped PbGa2S4 laser excited by diode-pumped Nd∶YAG laser[J]. Optics Letters, 2010, 35(18): 3051-3.

【50】Basiev T T, Doroshenko M E, Osiko V V, et al. Laser properties of Na+icons Co-doped PbGa2S4∶Dy3+crystal[C]. Advanced Solid-State Photonics, 2010.

【51】Jelinkova H, Doroshenko M E, Jelinek M, et al. Resonant pumping of dysprosium doped lead thiogallate by 1.7 μm Er∶YLF laser radiation[J]. Laser Physics Letters, 2011, 8: 349-353.

【52】Jelinkova H. Dysprosium lead thiogallate crystal resonantly pumped by Er∶ YLF laser radiation[C]. Advanced Solid-State Photonics, 2011.

【53】ulc J, Jelinkova H, Doroshenko M E, et al. High duty cycle and long pulse operation of Dy∶PbGa2S4 laser excited by diode pumped Nd∶YAG[C]. Advanced Solid-State Photonics. 2011.

【54】Jelínková H, Doroshenko M E, Jelínek M, et al. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode[J]. Optics Letters, 2013, 38(16): 3040-3043.

【55】Jelinkova H, Doroshenko M E, Osiko V V, et al. Dysprosium thiogallate laser: source of mid-infrared radiation at 2.4, 4.3, and 5.4 μm[J]. Applied Physics A, 2016, 122(8): 1-8.

引用该论文

Sun Xiao,Han Long,Wang Keqiang. Progress in Directly Pumping of Mid-Infrared Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050007

孙骁,韩隆,王克强. 直接抽运中红外固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54(5): 050007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF