基于各向异性高斯曲面拟合的星点质心提取算法
Center Extraction Method for Star-Map Targets Based on Anisotropic Gaussian Surface Fitting
摘要
恒星识别以及卫星目标检测识别是空间监视系统的重要应用之一。由于星图图像点目标成像的特点以及大量背景恒星的干扰, 星图中用于目标识别的特征难以提取, 因此目标的位置是实现目标识别的关键特征。高斯曲面拟合方法是使用较为广泛的目标质心提取算法之一, 通过理论分析和实验表明传统高斯曲面拟合方法对运动卫星的定位存在较大误差。为此, 提出了各向异性的高斯曲面拟合模型, 该模型通过使用两个不同的高斯模糊参数和旋转因子, 可以捕捉目标不同方向的各异特征, 适合卫星由于运动造成的随机方向模糊。仿真实验和真实数据实验表明, 本文方法的总体定位精度可分别达到0.008和0.04, 并能够准确提取星图目标的质心, 相比传统方法有较大改善。
Abstract
The star and satellite target detection and recognition are one of the important applications of space surveillance system. Because of the characteristic of point target imaging of the map image, and a large number of the interference of background stars, the feature extraction of the map for target recognition is difficult, so the location of the object is the key characteristics to realize target identification. Gaussian curved surface fitting method is one of the target centroid extraction algorithms to be used widely. Theoretical analysis and experiment show that the traditional Gaussian curved surface fitting method of the satellite motion poisoning has much error. So, the anisotropic Gaussian surface fitting model is put forward, and the model by using two different Gaussian blur parameters and rotation factors to capture target of anisotropic characteristics of different directions, which is suitable for the fuzzy random direction caused by the satellite movement. Simulation experiments and real data test show that the overall positioning accuracy of this method can achieve 0.008 and 0.04, respectively, which is able to accurately extract the map target centroid, and improved greatly than that of the traditional methods.
中图分类号:TP391.4
所属栏目:机器视觉
基金项目:国家863计划(2011AAXXX2035)、中国科学院长春光学精密机械与物理研究所三期创新工程资助项目(065X32CN60)
收稿日期:2016-11-22
修改稿日期:2017-01-20
网络出版日期:--
作者单位 点击查看
赵金宇:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
陈 涛:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
联系人作者:王敏(wmin0805@163.com)
备注:王 敏(1989—), 女, 博士研究生, 主要从事空间目标自动识别, 图像处理方面的研究。
【1】Sun Rongyu, Zhao Changyin. Optical survey technique for space debris in GEO[J]. Progress in Astronomy, 2012, 30(3): 394-410.
孙荣煜, 赵长印. GEO空间碎片的光学观测与精密定位[J]. 天文学进展, 2012, 30(3): 394-410.
【2】Zong Hua, Wang Bo, Zhou Zhiqiang, et al. An autonomous star identification algorithm based on patterns matching[J]. Transactions of Beijing Institute of Technology, 2015, 35(10): 1032-1037.
踪 华, 汪 渤, 周志强, 等. 一种基于模式匹配的自主星图识别算法[J]. 北京理工大学学报, 2015, 35(10): 1032-1037.
【3】Zheng S, Wu W R, Tian J, et al. A novel all-sky autonomous triangle-based star map recognition algorithm[J]. Opo-Eletronic Engineering, 2004, 31(3): 4-7.
【4】Chaudhuri S, Rajagopalan A N. Depth from defocus: a real aperture imaging approach[M]. Berlin: Springer, 1999: 17-18.
【5】Lian Yueyong, Zhang Chao, Xie Zongte. Accuracy analysis for sub-pixel location of star image[J]. Journal of Geomatics Science and Technology, 2015, 32(6): 578-582.
连月勇, 张 超, 谢宗特. 星点亚像元细分定位精度分析[J]. 测绘科学技术学报, 2015, 32(6): 578-582.
【6】Wei Xinguo, Zhang Guangjun, Jiang Jie. Subdivided locating method of star image for star sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(9): 812-815.
魏新国, 张广军, 江 洁. 星敏感器中星图图像的星体细分定位方法研究[J]. 北京航空航天大学学报, 2003, 29(9): 812-815.
【7】Yuan Yulei, Zheng Yong, Du Lan. High-accuracy centroid algorithm of star points[J]. Journal of Geomatics Science and Technology, 2012, 29(2): 122-126.
原玉磊, 郑 勇, 杜 兰. 星点中心高精度质心定位算法[J]. 测绘科学技术学报, 2012, 29(2): 122-126.
【9】Hu Xiaodong, Hu Qiang, Lei Xing, et al. Method of star centroid extraction used in daytime star sensors[J]. Journal of Chinese Inertial Technology, 2014, 22(4): 481-485.
胡晓东, 胡 强, 雷 兴, 等. 一种用于白天星敏感器的星点质心提取方法[J]. 中国惯性技术学报, 2014, 22(4): 481-485.
【10】Li Peng, Gao Limin, Wu Yiming, et al. Research on subpixel location error of weighted centroiding algorithm[J]. Electronic Measurement Technology, 2011, 34(6): 43-46, 72.
李 朋, 高立民, 吴易明, 等. 加权质心法亚像元定位误差研究[J]. 电子测量技术, 2011, 34(6): 43-46, 72.
【14】Zhang Yan, Cui Zhishe, Long Teng. Traching the centroid of a maneuvering target in image sequences[J]. Acta Aeronautica Et Astronautica Sinica, 2001, 22(4): 312-316.
张 岩, 崔智社, 龙 腾. 图像序列中机动目标的形心跟踪[J]. 航空学报, 2001, 22(4): 312-316.
【15】Wang Guangjun, Fang Jancheng. High precision interpolation algorithm for star pattern[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(5): 566-569.
王广君, 房建成. 一种星图识别的星体图像高精度内插算法[J]. 北京航空航天大学学报, 2005, 31(5): 566-569.
【16】Shortis M R, Clarke T A, Short T. Comparison of some techniques for the subpixel location of discrete target images[C]. SPIE, 1994, 2350: 239-250.
【17】Li Yufeng, Hao Zhihang. Research of hyper accuracy subpixel subdivision location algorithm for star image[J]. Optical Technique, 2005, 31(5): 666-671.
李玉峰, 郝志航. 星点图像超精度亚像元细分定位算法的研究[J]. 光学技术, 2005, 31(5): 666-671.
引用该论文
Wang Min,Zhao Jinyu,Chen Tao. Center Extraction Method for Star-Map Targets Based on Anisotropic Gaussian Surface Fitting[J]. Acta Optica Sinica, 2017, 37(5): 0515006
王 敏,赵金宇,陈 涛. 基于各向异性高斯曲面拟合的星点质心提取算法[J]. 光学学报, 2017, 37(5): 0515006
被引情况
【1】刘秉琦,陈一超,黄富瑜. 基于高阶奇次多项式模型的红外超广角图像中心标定. 光子学报, 2018, 47(7): 715001--1
【2】谢俊峰,朱红,李品,莫凡,李响. 基于动态序列噪声模板的主动式像素传感器星图去噪方法. 光学学报, 2019, 39(3): 315006--1
【3】曹阳,李保权,李海涛,桑鹏. 基于星点像重采样的星敏感器高精度质心算法. 光学学报, 2019, 39(7): 712003--1
【4】陈怀宇,尹达一. 复杂动态环境下精细导星仪拖尾星斑复原方法. 光学学报, 2019, 39(9): 912002--1