激光与光电子学进展, 2017, 54 (6): 062601, 网络出版: 2017-08-31   

基于磁光耦合的法拉第效应机理分析 下载: 1370次

Mechanism Analysis of Faraday Effect Based on Magneto-Optic Coupling
作者单位
1 火箭军工程大学兵器发射理论与技术国家重点学科实验室, 陕西 西安 710025
2 光电控制技术重点实验室, 河南 洛阳 471000
摘要
为进一步阐明基于法拉第效应的磁光调制过程中各因素之间的相互影响机理,引入了多场耦合理论,结合麦克斯韦方程并综合考虑磁场作用下物质结构内部参数的变化,构建了偏振光在磁光耦合条件下的传输模型,得到了法拉第旋转角的最终表达式,并利用基于有限元的多场耦合软件进行耦合模拟和数值求解。仿真结果表明,在10 A电流激励螺线管产生0.0373 T的磁感应强度下,入射波长为1064 nm的偏振光通过长度为3 cm的铽镓石榴石(TGG)磁光玻璃后,发生了2.245°的偏转,在同等条件下,通过MR3-2磁光玻璃时发生的偏转角为2.023°。通过对比仿真结果与理论计算结果,验证了磁光耦合机理模型的正确性。
Abstract
In order to elucidate the mutual influence mechanism among the factors in the magneto-optic modulation process based on Faraday effect, a multi-field coupling theory is introduced. A transmission model of polarized light is constructed at the condition of magneto-optic coupling when we comprehensively consider the change of internal parameters of the material structure under the action of the magnetic field and combine the Maxwell′s equation, and the final expression of the Faraday rotation angle is obtained. Coupled simulating and numerical solving are carried out with multi-field coupling software based on finite element method. The simulation results show that, a deflection angle of 2.245° occurs when the polarized light with a wavelength of 1064 nm passes through a 3 cm Tb3Ga5O12 (TGG) magneto-optic glass under magnetic induction intensity of 0.0373 T in a 10 A current excitation solenoid, while a deflection angle of 2.023° can be obtained by MR3-2 magneto-optic glass under the same condition. The correctness of the magneto-optic coupling mechanism model is verified by the comparison between the simulation results and the theoretical calculation results.

蔡伟, 邢俊晖, 杨志勇, 姚瑞桥. 基于磁光耦合的法拉第效应机理分析[J]. 激光与光电子学进展, 2017, 54(6): 062601. Cai Wei, Xing Junhui, Yang Zhiyong, Yao Ruiqiao. Mechanism Analysis of Faraday Effect Based on Magneto-Optic Coupling[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062601.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!