首页 > 论文 > 中国激光 > 44卷 > 6期(pp:600001--1)

相位敏感光时域反射仪研究和应用进展

Progress of Research and Applications of Phase-Sensitive Optical Time Domain Reflectometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

国家重大基础设施和关键区域的安全, 对于保障经济发展、国家安全、社会稳定和人民生活具有极其重要的意义。基于相位敏感光时域反射仪(Φ-OTDR)的分布式光纤振动传感系统在入侵探测、周界安防和基础设施安全监控等方面具有独特的技术优势, 近年来受到各国科技界和工业界的广泛关注。详述了本课题组近10年来在该领域的研究成果, 包括Φ-OTDR定量化相位解调技术、信号干涉衰落的机理研究、超高频率响应带宽系统、超高空间分辨率系统、低噪声窄线宽单频激光器和激光扫频技术等方面的进展; 介绍了Φ-OTDR系统在周界安防和铁路安全监测等领域的工程应用, 并对Φ-OTDR的国内外发展趋势进行了简要的评述。

Abstract

The safety of major infrastructure and key regions of a country has extremely important significance to the development of national economy, national safety, stability of society, and people′s daily life. A distributed fiber vibration sensing system based on phase-sensitive optical time domain reflectometry (Φ-OTDR) has unique technical superiority in intrusion detection, perimeter security, safe monitoring of infrastructure, and so on. The distributed fiber vibration sensing system based on Φ-OTDR attracts wide attention of scientists and industries in the world. We introduce the results of our researches in the field in recent ten years, including the Φ-OTDR quantitative phase demodulation technique, the mechanism of signal interference fading, the system with ultra-high frequency response band, the system with ultra-high spatial resolution, the low noise narrow linewidth single-frequency laser, and the technique for laser frequency sweeping. We also introduce the applications of Φ-OTDR system in perimeter security, railway safe monitoring, etc. A brief review of domestic and international development in Φ-OTDR is given.

投稿润色
补充资料

中图分类号:TN248

DOI:10.3788/cjl201744.0600001

所属栏目:综述

基金项目:国家自然科学基金(61377062, 61475165, 61405227, 61675216)、上海市科技创新基金(15XD1524500)、中国科学院创新基金(CXJJ-15Z006)、中国科学院重点部署项目支持

收稿日期:2017-01-16

修改稿日期:2017-02-12

网络出版日期:--

作者单位    点击查看

叶青:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800
潘政清:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800
王照勇:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
卢斌:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
魏芳:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800
瞿荣辉:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800
蔡海文:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800
赵浩:上海波汇科技股份有限公司, 上海 201203
方祖捷:中国科学院上海光学精密机械研究所上海市全固态激光器及应用技术重点实验室, 上海 201800

联系人作者:叶青(yeqing@siom.ac.cn)

备注:叶青(1977—), 男, 博士, 研究员, 博士生导师, 主要从事分布式光纤传感及其产业化等方面的研究。

【1】Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing: US5194847[P]. 1993-03-16.

【2】Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 2005, 23(6): 2081-2087.

【3】Lu Y L, Zhu T, Chen L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.

【4】King J P, Smith D F, Richards K, et al. Development of a coherent OTDR instrument[J]. Journal of Lightwave Technology, 1987, 5(4): 616-624.

【5】Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Applied Optics, 2007, 46(11): 1968-1971.

【6】Xie Kongli, Rao Yunjiang, Ran Zengling. Distributed optical fiber sensing system based of Rayleigh scattering light -OTDR using single-mode fiber laser with high power and narrow linewidth[J]. Acta Optica Sinica, 2008, 28(3): 569-572.
谢孔利, 饶云江, 冉曾令. 基于大功率超窄线宽单模光纤激光器的-光时域反射计光纤分布式传感系统[J]. 光学学报, 2008, 28(3): 569-572.

【7】Pan Z Q, Liang K Z, Ye Q, et al. Phase-sensitive OTDR system based on digital coherent detection[C]. SPIE, 2011, 8311: 83110S.

【8】Liang Kezhen, Pan Zhengqing, Zhou Jun, et al. Multi-parameter vibration detection system based on phase sensitive optical time domain reflectometer[J]. Chinese J Lasers, 2012, 39(8): 0805004.
梁可桢, 潘政清, 周 俊, 等. 一种基于相位敏感光时域反射计的多参量振动传感器[J]. 中国激光, 2012, 39(8): 0805004.

【9】Zhou J, Pan Z Q, Ye Q, et al. Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 2013, 31(17): 2947-2954.

【10】Zhou Jun, Pan Zhengqing, Ye Qing, et al. Phase demodulation technology using a multi-frequency source for discrimination of interference fading induced false alarms in a Φ-OTDR system[J]. Chinese J Lasers, 2013, 40(9): 0905003.
周 俊, 潘政清, 叶 青, 等. 基于多频率综合鉴别Φ-OTDR系统中干涉衰落假信号的相位解调技术[J]. 中国激光, 2013, 40(9): 0905003.

【11】Pan Z Q, Liang K Z, Zhou J, et al. Interference-fading-free phase-demodulated OTDR system[C]. SPIE, 2012, 8421: 842129.

【12】Pan Z Q, Wang Z Y, Ye Q, et al. High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing[C]. SPIE, 2014, 9157: 91576X.

【13】Wang Z Y, Pan Z Q, Fang Z J, et al. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source[J]. Optics Letters, 2015, 40(22): 5192-5195.

【14】Iida D, Toge K, Manabe T. High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR[C]. Optical Fiber Communication Conference and Exhibition, 2016: 16227057.

【15】Martins H F, Martin-Lopez S, Corredera P. Phase-sensitive optical time domain reectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km[J]. Journal of Lightwave Technology, 2013, 32(8): 1510-1518.

【16】Lu B, Pan Z Q, Wang Z Y, et al. High spatial resolution phase-sensitive optical time domain reflectometer with frequency-swept pulse[J]. Optics Letters, 2016, 42(3): 391-394.

【17】Zou W W, Yang S, Long X, et al. Optical pulse compression reflectometry: Proposal and proof-of-concept experiment[J]. Optics Express, 2015, 23(1): 512-522.

【18】Yang Jing, Qu Ronghui, Sun Guoyong, et al. A novel single longitudinal mode fiber laser[J]. Chinese J Lasers, 2005, 32(4): 441-444.
杨 敬, 瞿荣辉, 孙国勇, 等. 一种新型结构的单纵模光纤激光器[J]. 中国激光, 2005, 32(4): 441-444.

【19】Yang F, Ye Q, Pan Z Q, et al. 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application[J]. Optics Communications, 2012, 285(2): 149-152.

【20】Pan Z Q, Cai H W, Meng L, et al. Single-frequency phosphate glass fiber laser with 100-mW output power at 1535 nm and its polarization characteristics[J]. Chinese Optics Letters, 2010, 8(1): 52-54.

【21】Pan Z P, Ye Q, Cai H W, et al. Fiber ring with long delay used as a cavity mirror for narrowing fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(16): 1621-1624.

【22】Ye Q, Pan Z Q, Wang Z Y, et al. Novel slow-light reflector composed of a fiber ring resonator and low-reflectivity fiber Bragg grating[J]. Journal of Lightwave Technology, 2015, 33(14): 3016-3022.

【23】Wei F, Lu B, Wang J, et al. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking[J]. Optics Express, 2015, 23(4): 4970-4980.

【24】Wang J, Chen D J, Cai H W, el al. Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking[J]. Optics Express, 2015, 23(6): 7038-7043.

【25】Wang Zhaoyong, Pan Zhengqing, Ye Qing, et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chinese J Lasers, 2015, 42(4): 0405010.
王照勇, 潘政清, 叶 青, 等. 用于光纤围栏入侵告警的频谱分析快速模式识别[J]. 中国激光, 2015, 42(4): 0405010.

【26】Wang Z Y, Pan Z Q, Ye Q, et al. Novel distributed passive vehicle tracking technology using phase sensitive optical time domain reflectometer[J]. Chinese Optics Letters, 2015, 13(10): 100603.

【27】Qu Ronghui, Wang Zhaoyong, Cao Yulong, et al. Railway safety monitoring system and monitoring method: CN201610576448.7[P]. 2016-07-21.
瞿荣辉, 王照勇, 曹玉龙, 等. 铁路安全监测系统和监测方法: CN201610576448.7[P]. 2016-07-21.

【28】Qin Z G, Zhu T, Chen L, et al. High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1091-1093.

【29】Hui X N, Ye T H, Zheng S L, et al. Space-frequency analysis with parallel computing in a phase-sensitive optical time-domain reflectometer distributed sensor[J]. Applied Optics, 2014, 53(28): 6586-6590.

【30】Qin Z G, Chen L, Bao X Y. Wavelet denoising method for improving detection performance of distributed vibration sensor[J]. IEEE Photonics Technology Letters, 2012, 24(7): 542-544.

【31】Wang Z N, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 2016, 24(2): 853-858.

【32】Dong Y K, Chen X, Liu E H, et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer[J]. Applied Optics, 2016, 55(28): 7810-7815.

【33】Tu G J, Zhang X P, Zhang Y X, et al. The development of an Φ-OTDR system for quantitative vibration measurement[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1349-1352.

【34】Pang F F, He M T, Liu H H, et al. A fading-discrimination method for distributed vibration sensor using coherent detection of -OTDR[J]. IEEE Photonics Technology Letters, 2016, 28(23): 2752-2755.

【35】Munster P, Vojtech J, Sysel P, et al. Φ-OTDR signal amplification[C]. SPIE, 2015, 9506: 950606.

【36】Peng F, Peng Z P, Jia X H, et al. 128 km fully-distributed high-sensitivity fiber-optic intrusion sensor with 15 m spatial resolution[C]. Optical Fiber Communications Conference and Exhibition, 2014: 14546688.

【37】Martins H F, Martin-Lopez S, Corredera P, et al. Phase-sensitive optical time domain reectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km[J]. Journal of Lightwave Technology, 2014, 32(8): 1510-1518.

【38】Mermelstein D, Shacham E, Biton M, et al. Brillouin amplification and processing of the Rayleigh scattered signal[J]. Optics Letters, 2015, 40(14): 3340-3343.

【39】Wang Z N, Zeng J J, Li J, et al. 175 km phase-sensitive OTDR with hybrid distributed amplification[C]. SPIE, 2014, 9157: 9157D5.

【40】Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 2013, 24(8): 085204.

【41】Wang C, Wang C, Shang Y, et al. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry[J]. Optics Communications, 2015, 346: 172-177.

【42】Cao Y L, Yang F, Xu D, et al. Phase-sensitive optical time-domain reflectometer based on a 120°-phase-difference Michelson interferometer[J]. Chinese Physics Letters, 2016, 33(5): 050701.

【43】Duan N, Peng F, Rao Y J, et al. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (Φ-OTDR)[J]. SPIE, 2014, 9157: 9157A.

引用该论文

Ye Qing,Pan Zhengqing,Wang Zhaoyong,Lu Bin,Wei Fang,Qu Ronghui,Cai Haiwen,Zhao Hao,Fang Zujie. Progress of Research and Applications of Phase-Sensitive Optical Time Domain Reflectometry[J]. Chinese Journal of Lasers, 2017, 44(6): 0600001

叶青,潘政清,王照勇,卢斌,魏芳,瞿荣辉,蔡海文,赵浩,方祖捷. 相位敏感光时域反射仪研究和应用进展[J]. 中国激光, 2017, 44(6): 0600001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF