首页 > 论文 > 中国激光 > 44卷 > 6期(pp:601008--1)

基于飞秒光纤激光器的光频率梳设计与研制技术

Design and Development Technique for Optical Frequency Comb Based on Femtosecond Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于飞秒光纤激光器的光频率梳设计与研制技术。设计与研制出脉冲宽度为55 fs、频率为210 MHz的色散管理孤子锁模掺铒光纤激光器, 并优化设计了啁啾脉冲光纤放大链路; 由负色散高非线性光纤产生了频率范围为1080~2320 nm的倍频程超连续谱, 经f-2f(f为频率)自差拍检测出信噪比达32 dB的载波包络偏移频率; 通过将重复频率的4次谐波和载波包络偏移频率锁定到商用铷原子钟, 实现了对光频率梳的高精度锁定。测量结果表明, 1 s计数门控时间下的重复频率和偏移频率标准偏差分别为0.65 mHz和1.76 mHz, 100 s采样时间下的Allan偏差分别为1.74×10-13和1.80×10-11。这种光纤光梳可望满足光频计量、光梳光谱、时频传递和微波产生等领域的应用需求。

Abstract

A design and development technique for optical frequency comb based on femtosecond fiber laser is proposed. A dispersion-managed solution mode-locked erbium-doped fiber laser with pulse width of 55 fs and frequency of 210 MHz is designed, and the chirped pulse fiber amplification link is optimized. An octave supercontinuum from 1080 nm to 2320 nm is generated by a fiber with high nonlinear, which makes the signal-to-noise ratio of the detected carrier-envelope offset frequency reach 32 dB by the f-2f (f represents frequency) autodyne method. When the 4th harmonic wave of repetition rate and the carrier envelope offset frequency are locked to a commercial rubidium atomic clock, an optical frequency comb is locked with high precision. Measurement results show that the standard deviations of repetition rate and carrier envelope offset frequency are 0.65 mHz and 1.76 mHz at 1 s counter gate time, corresponding to the Allan deviations of 1.74×10-13 and 1.80×10-11 for 100 s sampling time, respectively. Such a fiber optical comb may meet applications in fields of optical frequency metrology, optical comb spectroscopy, timing and frequency transfer, microwave generation and so on.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/cjl201744.0601008

所属栏目:激光物理

基金项目:国家自然科学基金(61377044, 61275186)、国家973计划(2013CB934304)、中国科学院战略性先导科技专项(B类)(XDB21010300)

收稿日期:2017-01-24

修改稿日期:2017-02-24

网络出版日期:--

作者单位    点击查看

吴浩煜:中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
时雷:中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031
马挺:中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031
马金栋:中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031
路桥:中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031
孙青:中国计量科学研究院光学与激光计量科学研究所, 北京 100029
毛庆和:中国科学院安徽光学精密机械研究所安徽光子器件与材料重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026

联系人作者:吴浩煜(w3980216@163.com)

备注:吴浩煜(1988—), 男, 博士研究生, 主要从事超短脉冲光纤激光技术方面的研究。

【1】Hall J L. Nobel lecture: defining and measuring optical frequencies[J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295.

【2】Hnsch T W. Nobel lecture: passion for precision[J]. Reviews of Modern Physics, 2006, 78(4): 1297-1309.

【3】Cundiff S T, Ye J. Colloquium: femtosecond optical frequency combs[J]. Reviews of Modern Physics, 2003, 75(1): 325-342.

【4】Diddams S A, Udem T, Bergquist J C, et al. An optical clock based on a single trapped199Hg+ ion[J]. Science, 2001, 293(5531): 825-828.

【5】Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 2000, 39(30): 5512-5517.

【6】Fox R W, Washburn B R, Newbury N R, et al. Wavelength references for interferometry in air[J]. Applied Optics, 2005, 44(36): 7793-7801.

【7】Swann W C, Newbury N R. Frequency-resolved coherent lidar using a femtosecond fiber laser[J]. Optics Letters, 2006, 31(6): 826-828.

【8】Holman K W, Hudson D D, Ye J, et al. Remote transfer of a high-stability and ultralow-jitter timing signal[J]. Optics Letters, 2005, 30(10): 1225-1227.

【9】Coddington I, Swann W C, Newbury N R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 2008, 100(1): 013902.

【10】Mcferran J J, Swann W C, Washburn B R, et al. Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions[J]. Applied Physics B, 2007, 86(2): 219-227.

【11】Apolonski A, Poppe A, Tempea G, et al. Controlling the phase evolution of few-cycle light pulses[J]. Physical Review Letters, 2000, 85(4): 740-743.

【12】Washburn B R, Swann W C, Newbury N R. Response dynamics of the frequency comb output from a femtosecond fiber laser[J]. Optics Express, 2005, 13(26): 10622-10633.

【13】Stumpf M C, Pekarek S, Oehler A E H, et al. Self-referenceable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator[J]. Applied Physics B, 2010, 99(3): 401-408.

【14】Kim K, Washburn B R, Wilpers G, et al. Stabilized frequency comb with a self-referenced femtosecond Cr: forsterite laser[J]. Optics Letters, 2005, 30(8): 932-934.

【15】Holzwarth R, Zimmermann M, Udem T, et al. White-light frequency comb generation with a diode-pumped Cr∶LiSAF laser[J]. Optics Letters, 2001, 26(17): 1376-1378.

【16】Washburn B R, Diddams S A, Newbury N R, et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3): 250-252.

【17】Ruehl A. Advances in Yb∶fiber frequency comb technology[J]. Optics and Photonics News, 2012, 23(5): 30-35.

【18】Lee C C, Mohr C, Bethge J, et al. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator[J]. Optics Letters, 2012, 37(15): 3084-3086.

【19】Meng Fei, Cao Shiying, Cai Yue, et al. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2011, 60(10): 100601.
孟 飞, 曹士英, 蔡 岳, 等. 光纤飞秒光学频率梳的研制及绝对光学频率测量[J]. 物理学报, 2011, 60(10): 100601.

【20】Zhang Y Y, Yan L L, Zhao W Y, et al. A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator[J]. Chinese Physics B, 2015, 24(6): 064209.

【21】Yang Xingtao, Chen Xiuliang, Zhao Jian, et al. Phase noise suppression and feedback control of carrier-envelope phase in an Yb-doped fiber frequency comb[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(7): 698-704.
杨行涛, 陈修亮, 赵 健, 等. 掺镱光学频率梳噪声抑制与载波包络相位锁定[J]. 中国科学: 物理学 力学 天文学, 2014, 44(7): 698-704.

【22】Droste S, Ycas G G, Washburn B R, et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 2016, 5(2): 196-213.

【23】Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

【24】Meng Fei, Cao Shiying, Zhao Guangzhen, et al. Application of an Er: doped fiber comb for Sr lattice clock[J]. Chinese J Lasers, 2015, 42(7): 0702012.
孟 飞, 曹士英, 赵光贞, 等. 掺铒光纤光梳在锶晶格钟中的应用研究[J]. 中国激光, 2015, 42(7): 0702012.

【25】Xia Chuanqing, Wu Tengfei, Zhao Chunbo, et al. Experiment study on carrier-envelope offset frequency locking in a femtosecond fiber comb[J]. Laser & Optoelectronics Progress, 2016, 53(12): 123201.
夏传青, 武腾飞, 赵春播, 等. 光纤飞秒光学频率梳载波包络偏移频率锁定的实验研究[J]. 激光与光电子学进展, 2016, 53(12): 123201.

【26】Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

【27】Ye J, Hall J L, Diddams S A. Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum[J]. Optics Letters, 2000, 25(22): 1675-1677.

【28】Deschênes J D, Giaccari P, Genest J. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry[J]. Optics Express, 2010, 18(22): 23358-23370.

【29】Jones D J, Diddams S A, Ranka J K, et al. Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

【30】Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

【31】Song Y J, Jung K Y, Kim J W. Impact of pulse dynamics on timing jitter in mode-locked fiber lasers[J]. Optics Letters, 2011, 36(10): 1761-1763.

【32】Nugent-Glandorf L, Johnson T A, Kobayashi Y, et al. Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb[J]. Optics Letters, 2011, 36(9): 1578-1580.

【33】Tamura K, Nelson L E, Haus H A. Soliton versus nonsoliton operation of fiber ring lasers[J]. Applied Physics Letters, 1994, 64(2): 149-151.

【34】Baumann E, Giorgetta F R, Nicholson J W, et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 2009, 34(5): 638-640.

【35】Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 2011, 19(19): 18501-18509.

【36】Lim J, Knabe K, Tillman K A, et al. A phase-stabilized carbon nanotube fiber laser frequency comb[J]. Optics Express, 2009, 17(16): 14115-14120.

【37】Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 1992, 28(24): 2226-2228.

【38】Ilday F , Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21): 213902.

【39】Li P, Shi L, Sun Q, et al. 312 MHz, compact all-normal-dispersion Yb∶fiber ring laser with an integrated WDM-ISO[J]. Chinese Optics Letters, 2015, 13(3): 031403.

【40】Mao Q, Lit J W Y. Amplification enhancement of L-band erbium-doped fiber amplifiers by reflection scheme[J]. Optics Communications, 2002, 201(1-3): 61-69.

【41】Cao Shiying, Meng Fei, Lin Baike, et al. Precise frequency control of an Er-doped fiber comb[J]. Acta Physica Sinica, 2012, 61(13): 134205.
曹士英, 孟 飞, 林百科, 等. 长时间精密锁定的掺Er光纤飞秒光学频率梳[J]. 物理学报, 2012, 61(13): 134205.

【42】Han Hainian, Wei Zhiyi. Low phase noise optical frequency comb[J]. Physics, 2016, 45(7): 449-457.
韩海年, 魏志义. 低相噪光学频率梳[J]. 物理, 2016, 45(7): 449-457.

【43】Telle H R, Lipphardt B, Stenger J. Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements[J]. Applied Physics B, 2002, 74(1): 1-6.

【44】Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 1993, 18(13): 1080-1082.

【45】Li P, Wang G Z, Li C, et al. Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser[J]. Optics Express, 2012, 20(14): 16017-16022.

【46】Zhao W, Hu X H, Wang Y S. Femtosecond-pulse fiber based amplification techniques and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 512-524.

【47】Schimpf D N, Seise E, Limpert J, et al. The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems[J]. Optics Express, 2008, 16(14): 10664-10674.

【48】Sinclair L C, Deschênes J D, Sonderhouse L, et al. Invited article: a compact optically coherent fiber frequency comb[J]. Review of Scientific Instruments, 2015, 86(8): 081301.

【49】Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(11): 1388-1402.

【50】Peng J L, Ahn H, Shu R H, et al. Highly stable, frequency-controlled mode-locked erbium fiber laser comb[J]. Applied Physics B, 2007, 86(1): 49-53.

【51】Sinclair L C, Coddington I, Swann W C, et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Optics Express, 2014, 22(6): 6996-7006.

引用该论文

Wu Haoyu,Shi Lei,Ma Ting,Ma Jindong,Lu Qiao,Sun Qing,Mao Qinghe. Design and Development Technique for Optical Frequency Comb Based on Femtosecond Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008

吴浩煜,时雷,马挺,马金栋,路桥,孙青,毛庆和. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF