首页 > 论文 > 光谱学与光谱分析 > 37卷 > 3期(pp:971-977)

基于CCD检测器的便携式液体阴极辉光放电光谱仪快速测定卤水中的锂

Rapid Determination of Lithium in Brine by a Portable Solution Cathode Glow Discharge Based on Charge Coupled Device Detector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

锂是绿色能源和轻质合金的理想材料, 作为一种重要的战略资源而备受各国重视。 锂主要来源于盐湖卤水, 我国盐湖卤水资源丰富, 但主要分布在西部偏远地区, 现场勘探和开采急需便携分析仪器的支持, 然而目前现有实验分析技术均达不到野外现场分析的目标。 近十年来, 基于大气压液体阴极辉光放电光谱仪(SCGD-AES)因无需燃气, 载气等气流条件及真空环境而受到关注。 在前人研究基础上, 自行开发了基于CCD光谱仪检测系统的便携式大气压液体阴极辉光放电光谱仪(简称Li-K分析仪), 仪器长, 宽, 高分别为35, 19和27 cm, 重约为10 kg, 十分有利于便携。选择Li的分析谱线波长为670.78 nm, 以取自西藏两种不同卤水水化学类型样品为研究对象, 建立了卤水中Li的快速分析方法。在最佳工作条件下测得Li的检出限为4 ng·mL-1, 方法的精密度(RSD)<2%。 研究表明, 不同稀释倍数时, Li的分析结果与ICP-MS分析结果相差较大, 这可能与溶液的基体效应有关, 而采用标准加入法可有效减小基体效应的影响, 获得了与ICP-MS较为一致的分析结果, 可提高分析结果的准确度。 大量实验结果表明, 标准加入法只需2个点即可得到Li准确的分析结果, 大大减少了实验工作量, 为便携式Li-K分析仪在野外现场测定盐湖卤水中的Li奠定了方法学基础。

Abstract

In 21st century, many countries pay much attention to lithium because lithium is an ideal material for green energy and light alloys as well as an important kind of strategic resources. The main source of lithium is from salt lake brine. China has rich resources of salt lake brine, but these brine resources are mainly distributed in the remote western region, which are in urgent need of portable analytical instrument for on-site exploration and exploitation. However, the available experimental techniques at present can not achieve the target of on-site analysis. Over the past decade, based on atmospheric pressure solution cathode glow discharge-atomic emission spectrometry (SCGD-AES) has been paid attention to analytical researchers because it runs without common air conditions such as fuel gas, carrier gas and vacuum environment. On the basis of previous studies of other researchers, we have developed a portable SCGD based on a charge coupled device (CCD) detector by ourselves, which is short for Li-K analyzer. The length, width, height and weight of the portable Li-K analyzer is 35 cm, 19 cm, 27 cm and 10 kg, respectively, which is very conducive to carry. This work selected the wavelength of 670.78 nm as the characteristic spectral line of Li and has established a rapid analytical method for Li in salt lake brine based on two different types of brines from Tibet. Under the optimum operating conditions, the detection limit of Li was 4 ng·mL-1 and the measured precision (RSD) was better than 2%. The analytical results of Li were much different from those obtained by inductively coupled plasma-mass spectrometry (ICP-MS) with different dilution ratios by standard curve method, which may be related to the matrix effect of solution. However, the analytical results of Li agreed well with the results obtained by ICP-MS using standard addition method, which showed that standard addition method can effectively reduce the matrix effect and improve the analytical accuracies. A great deal of experimental results showed that standard addition method could obtain accurate results of Li using only two points and can greatly reduce the workloads. This work laid a methodological foundation for on-site determination of Li in salt lake brine by the portable Li-K analyzer.

投稿润色
补充资料

中图分类号:O657.3

DOI:10.3964/j.issn.1000-0593(2017)03-0971-07

基金项目:the Special Scientific Research Fund of Ministry of Land and Resources of China (201311013), Fundamental Research Funds of Chinese Academy of Geological Sciences (CSJ201607) and the large resource investigation project of China (12120113091000)

收稿日期:2016-05-12

修改稿日期:2016-10-20

网络出版日期:--

作者单位    点击查看

刘 晓:国家地质实验测试中心, 北京 100037
杨啸涛:国家地质实验测试中心, 北京 100037
詹秀春:国家地质实验测试中心, 北京 100037
袁继海:国家地质实验测试中心, 北京 100037
樊兴涛:国家地质实验测试中心, 北京 100037
焦 距:国家地质实验测试中心, 北京 100037

联系人作者:詹秀春(zhanxiuchun2012@126.com)

备注:ZHAN Xiu-chun, (1961—), Professor in National Research Center for Geoanalysis

【1】LI Jian-kang, LIU Xi-fang, WANG Deng-hong. Acta Geologica Sinica, 2014, (12): 2269.

【2】GAO Feng, ZHENG Mian-ping, NIE Zhen, et al. Acta Geoscientica Sinica, 2011, 32(4): 483.

【3】NIE Zhen, BU Ling-zhong, ZHENG Mian-ping. Acta Geoscientica Sinica, 2010, 31(1): 95.

【4】YUAN Hong-zhan, ZHU Yun-jun, WU Li-ping, et al. Rock and Mineral Analysis, 2011, 30(1): 87.

【5】Zhu Chengcai, Dong Yaping, Yun Zeng, et al. Hydrometallury, 2014, 143.

【6】Taddia M, Modesti P, Albertazzi A. Journal of Nuclear Materials, 2005, 336: 173.

【7】ZHANG Zhen, WANG Zheng, ZOU Hui-jun, et al. Chinese Journal of Analytical Chemistry, 2013, 41(10): 1606.

【8】GAI Rong-yin, WANG Zheng, HE Yan-feng, et al. Chinese Journal of Analytical Chemistry, 2014, (11): 1617.

【9】Wang Z, Schwartz S, Ray S J, et al. Journal of Analytical Atomic Spectrometry, 2013, 28: 234.

【10】Cserfalvi T, Mezei P. Fresenius Journal of Analytical Chemistry, 1996, 355(7-8): 813.

【11】Grgy K, Bencs L, Mezei P, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 77: 52.

【12】ZHENG Pei-chao, ZHANG Bin, WANG Jin-mei, et al. Spectmscopy and Spectral Amlysis, 2015, 35(7): 2012.

【13】JIAO Ju, YANG Xiao-tao, ZHAN Xiu-chun, et al. Rock and Mineral Analysis, 2016, 35(4): 350.

【14】Wang Z, Gai R Y, Zhou L, et al. Journal of Analytical Atomic Spectrometry, 2014, 29: 2042.

【15】Wuhan University. Analytical Chemistry (Fifth Edition). Beijing: Higher Education Press, 2007, 11.

引用该论文

LIU Xiao,YANG Xiao-tao,ZHAN Xiu-chun,YUAN Ji-hai,FAN Xing-tao,JIAO Ju. Rapid Determination of Lithium in Brine by a Portable Solution Cathode Glow Discharge Based on Charge Coupled Device Detector[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 971-977

刘 晓,杨啸涛,詹秀春,袁继海,樊兴涛,焦 距. 基于CCD检测器的便携式液体阴极辉光放电光谱仪快速测定卤水中的锂[J]. 光谱学与光谱分析, 2017, 37(3): 971-977

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF