首页 > 论文 > 激光与光电子学进展 > 54卷 > 7期(pp:71402--1)

选区激光熔化镍基单晶高温合金的熔池显微组织

Molten Pool Microstructure of Ni-Based Single Crystal Superalloys Fabricated by Selective Laser Melting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

根据柱状晶向等轴晶转变(CET)图,建立了激光熔池横截面的几何关系,得出了选区激光熔化(SLM)镍基单晶高温合金的凝固条件与显微组织的关系,并在SRR99单晶基板的(100)晶面上沿[001]方向进行了SLM实验。结果表明,当激光功率为160 W、铺粉层厚为20 μm、扫描速率Vb≤30 m·min-1时,凝固速度与激光扫描速度的夹角最小值为46.4°(大于45°)。可以预测激光熔池组织仅由熔池底部向顶部生长的[001]枝晶和熔池两侧的[010]枝晶组成,实验结果与理论分析结果相吻合,且层间形成了良好的冶金结合,基层的结晶取向得到延续。

Abstract

Based on the columnar to equiaxed transition (CET) map, the geometrical relationship for the cross section of the molten pool is established and the relationship between the solidification condition and the microstructure for Ni-based single crystal superalloys fabricated by selective laser melting (SLM) is obtained. The SLM experiments are conducted on the (100) crystallographic plane of SRR99 single crystal substrate along the [001] direction. The results show that the minimum angle between the solidification velocity and the laser scanning velocity is about 46.4° (larger than 45°) under the conditions of laser power of 160 W, powder-layer thickness of 20 μm and scanning speed of Vb≤30 m·min-1. It can be predicted that the microstructure of the laser molten pool is composed of [001] dendritic crystals growing from bottom to top and [010] dendritic crystals on two sides. The experimental results coincide well with the theoretical analysis results. In addition, good metallurgical bonds are formed between layers and the crystallographic orientation of substrates gets extended.

投稿润色
补充资料

中图分类号:TG146.1

DOI:10.3788/lop54.071402

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51075164)、河南省科技厅科技攻关项目(142102210509)、河南省教育厅重点科技攻关项目(14A460015)

收稿日期:2017-02-09

修改稿日期:2017-03-09

网络出版日期:--

作者单位    点击查看

潘爱琼:郑州科技学院机械工程学院, 河南 郑州 450064华中科技大学武汉光电国家实验室, 湖北 武汉 430074
张 辉:郑州科技学院机械工程学院, 河南 郑州 450064
王泽敏:华中科技大学武汉光电国家实验室, 湖北 武汉 430074

联系人作者:潘爱琼(panaiqionga@163.com)

备注:潘爱琼(1987—),女,硕士,讲师,主要从事增材制造方面的研究。

【1】Hu Zhuangqi, Liu Lirong, Jin Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3): 1-7.
胡壮麒, 刘丽荣, 金 涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31(3): 1-7.

【2】Tang Zhongjie, Guo Tieming, Fu Ying, et al. Research present situation and the development prospect of nickel-based superalloy[J]. Metal World, 2014(1): 36-40.
唐中杰, 郭铁明, 付 迎, 等. 镍基高温合金的研究现状与发展前景[J]. 金属世界, 2014(1): 36-40.

【3】Ford T. Single crystal blades[J]. Aircraft Engineering and Aerospace Technology, 1997, 69(6): 564-566.

【4】Arakere N K, Swanson G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 161-176.

【5】Kurz W, Bezenon C, Gumann M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials, 2001, 2(1): 185-191.

【6】Gumann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloy: Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

【7】Mokadem S, Bezenon C, Hauert A, et al. Laser repair of superalloy single crystals with varying substrate orientations[J]. Metalllurgical and Materials Transactions A, 2007, 38(7): 1500-1510.

【8】Ardakani M G, D′Souza N, Wagner A, et al. Competitive grain growth and texture evolution during directional solidification of superalloys[A]. The Minerals Metals and Materials Society, 2000.

【9】Yang S, Huang W D, Liu W J, et al. Development of microstructures in laser surface remelting of DD2 single crystal[J]. Acta Materialia, 2002, 50(2): 315-325.

【10】Huang Weidong. Laser solid forming[M]. Xi′an: Northwestern Polytechnical University Press, 2007.
黄卫东. 激光立体成形[M]. 西安: 西北工业大学出版社, 2007.

【11】Chen Guangxia, Zeng Xiaoyan. Comparative research on direct laser fabrication and selective laser melting[J]. Modern Manufacturing Engineering, 2005(5): 72-75.
陈光霞, 曾晓雁. DLF与SLM激光快速成型方法的比较研究[J]. 现代制造工程, 2010(5): 72-75.

【12】Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel[J]. Physics Procedia, 2011, 12: 255-263.

【13】Wang F, Wu X H, Clark D. On direct laser deposited Hastelloy-X: dimension, surface finish, microstructure and mechanical properties[J]. Materials Science and Technology, 2011, 27(1): 344-356.

【14】Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties[J]. Journal of Alloys and Compounds, 2014, 585(6): 713-721.

【15】Carter L N, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys[J]. Materials Science and Technology, 2016, 32(7): 657-661.

【16】Hou Huipeng, Liang Yongchao, He Yanli, et al. Microstructure evolution and tensile properties of Hastelloy-X parts produced by selective laser melting[J]. Chinese J Lasers, 2017, 44(2): 0202007.
侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能研究[J]. 中国激光, 2017, 44(2): 0202007.

【17】Yan Anru, Yang Tiantian, Wang Yanling, et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese J Lasers, 2016, 43(2): 0203004.
闫岸如, 杨恬恬, 王燕灵, 等. 选区激光熔化不同层厚镍的热特性与机械性能[J]. 中国激光, 2016, 43(2): 0203004.

【18】Pan Aiqiong. Study on SRR99 Ni-based single-crystal superalloy by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2013: 28-29.
潘爱琼. 选区激光熔化成形SRR99镍基单晶的基础研究[D]. 武汉: 华中科技大学, 2013: 28-29.

引用该论文

Pan Aiqiong,Zhang Hui,Wang Zemin. Molten Pool Microstructure of Ni-Based Single Crystal Superalloys Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071402

潘爱琼,张 辉,王泽敏. 选区激光熔化镍基单晶高温合金的熔池显微组织[J]. 激光与光电子学进展, 2017, 54(7): 071402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF