首页 > 论文 > 光学学报 > 37卷 > 7期(pp:730002--1)

快相与弛豫荧光动力学植物光合作用参数反演方法

Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

根据生物膜能流理论和电子传递模型,结合快相与弛豫两种激发条件,对复杂的光合作用过程进行分析并简化计算,提出植物光合作用参数反演方法。利用滑动窗口斜率判定法确定最大荧光产率;利用线性最小二乘算法解析快相荧光过程获得光化学量子效率和功能吸收截面;利用离散迭代算法解析弛豫荧光过程获得质体醌平均还原时间常数。对对数生长期以及铜离子胁迫条件下的平裂藻和斜生栅藻进行实验测量,结果表明该方法反演结果具有良好的稳定性和重复性,光化学量子效率、功能吸收截面和质体醌平均还原时间常数的测量结果相对标准偏差分别为1.25%、1.50%和1.83%,其中光化学量子效率与脉冲振幅调制技术的测量结果线性相关系数达到0.9714。该方法为研究植物生理研究提供一种光学分析手段。

Abstract

According to the biological film energy flow theory and electron transfer model, the plant complex photosynthesis is analyzed and simplified by combining to the exciting conditions of fast phase and relaxation, so that an inversion method of plant photosynthesis parameter is proposed .The maximum fluorescence yield is calculated by using the determinate method of sliding window slope. The photochemical quantum efficiency and the functional absorption cross section are obtained by analyzing the fast phase fluorescence process with linear least square algorithm. The plastoquinone average reduction time constant is obtained by analyzing the relaxation fluorescence process with discrete iterative algorithm. The experimental measurement results of the merismopedia and scenedesmu sobliquus grew in logarithmic phase and under the copper ion stress conditions show that the inversion has good stability and repeatability. The relative standard deviation of the photochemical quantum efficiency, the functional absorption cross section and the plastoquinone average reduction time constant are 1.25%, 1.50% and 1.83%, respectively. The linear correlation coefficient of the photochemical efficiency compared to the measuring result of the pulse amplitude modulation technology is 0.9714. The proposed inversion method provides an optical analysis means for the study of plant physiology.

投稿润色
补充资料

中图分类号:X835

DOI:10.3788/aos201737.0730002

所属栏目:光谱学

基金项目:国家自然科学基金(31400317)、国家863计划 (2014AA06A509)、国家重点研发计划项目(2016YFC1400602)、安徽省科技重大专项(15CZZ04125)、安徽省自然科学基金青年项目(1708085QD87)、青岛海洋科学与技术国家实验室开发基金项目(QNLM2016ORP0312)

收稿日期:2017-01-23

修改稿日期:2017-03-06

网络出版日期:--

作者单位    点击查看

覃志松:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031中国科学技术大学 安徽 合肥 230026桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
赵南京:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
殷高方:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
石朝毅:合肥学院电子工程系, 安徽 合肥 230601
甘婷婷:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
肖 雪:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
段静波:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
张小玲:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031中国科学技术大学 安徽 合肥 230026
陈 双:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031中国科学技术大学 安徽 合肥 230026
刘建国:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘文清:中国科学院安徽光学精密机械研究所安徽省环境光学监测技术重点实验室, 安徽 合肥 230031

联系人作者:覃志松(zsqin@aiofm.ac.cn)

备注:覃志松(1977-),男,博士研究生,讲师,主要从事荧光检测技术方面的研究。

【1】Han Boping, Han Zhiguo, Fu Xiang. Algae photosynthesis mechanism and models[M]. Beijing: Science Press, 2003.
韩博平, 韩志国, 付 翔. 藻类光合作用机理与模型[M]. 北京: 科学出版社, 2003.

【2】Mauzerall D. Light-induced fluorescence changes in chlorella, and the primary photoreactions for the production of oxygen[C]. Proceedings of the National Academy of Sciences, 1972, 69(6): 1358-1362.

【3】Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10: 51-62.

【4】Kolber Z S, Prasil O, Falkowski P G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols[J]. Biochimica Et Biophysica Acta-Bioenergetics, 1998, 1367(1-3): 88-106.

【5】Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a, fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry & Photobiology B Biology, 2011, 104(1-2): 236-257.

【6】Qiu Xiaohan, Zhang Yujun, Yin Gaofang, et al. Photosynthetic parameters inversion algorithm study based on chlorophyll fluorescence induction kinetics curve[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2194-2197.
邱晓晗, 张玉钧, 殷高方, 等. 基于叶绿素荧光诱导动力学曲线的光合作用参数反演算法研究[J]. 光谱学与光谱分析, 2015, 35(8): 2194-2197.

【7】Suggett D J . Chlorophyll a fluorescence in aquatic sciences: methods and applications[M]. Springer Science+Business Media B.V., 2010: 19-30.

【8】Ling Jingjin. The influence of environmental stress on the growth and photosynthesis of chlorella pyrenoidosa[D]. Shanghai: East China Normal University, 2009.
凌旌瑾. 环境胁迫对蛋白核小球藻 (chlorella pyrenoidosa) 生长和光合作用的影响[D]. 上海: 华东师范大学, 2009.

【9】Chen L, Zheng Q, Liu Z. Effects of different concentrations of copper ion on the growth and chlorophyll fluorescence characteristics of Scendesmus obliquus L[J]. Ecology and Environmental Sciences, 2009, 18(4): 1231-1235.

【10】Pinto E, Sigaud-Kutner T, Leitao M A S, et al. Heavy metal-induced oxidative stress in algae[J]. Journal of Phycology, 2003, 39(6): 1008-1018.

【11】Malik N, Biswas A K, Raju C B. Plankton as an indicator of heavy metal pollution in a freshwater reservoir of Madhya Pradesh, India[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(6): 725-729.

引用该论文

Qin Zhisong,Zhao Nanjing,Yin Gaofang,Shi Chaoyi,Gan Tingting,Xiao Xue,Duan Jingbo,Zhang Xiaoling,Chen Shuang,Liu Jianguo,Liu Wenqing. Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics[J]. Acta Optica Sinica, 2017, 37(7): 0730002

覃志松,赵南京,殷高方,石朝毅,甘婷婷,肖 雪,段静波,张小玲,陈 双,刘建国,刘文清. 快相与弛豫荧光动力学植物光合作用参数反演方法[J]. 光学学报, 2017, 37(7): 0730002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF