首页 > 论文 > 光学学报 > 37卷 > 7期(pp:714002--1)

固体激光器中正交偏振模式间增益竞争的研究

Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由兰姆半经典激光理论可知,固体激光器中两个模式能否同时振荡取决于两个模式之间的耦合程度,其定义为增益竞争引起的互饱和系数与自饱和系数之比。实验中,利用两个四分之一波片搭建了双频Nd∶YAG固体激光器,实现了频差从30 MHz到1.3 GHz连续可调的双频激光输出,在此基础上,测量了两正交偏振模式在不同频差输出条件下的噪声功率谱密度,计算出表征两个模式间增益竞争程度的耦合系数。理论上,根据兰姆半经典理论推导出耦合系数的表达式,验证了实验中耦合系数随着频差增加而减小的变化趋势,分析了影响耦合系数的因素,为进一步优化双频固体激光器提供理论基础。

Abstract

According to Lamb′s semiclassical laser theory, whether the two modes in a solid-state laser can oscillate simultaneously depends on the mode-coupling coefficient between them. The coupling coefficient is defined as the ratio of cross-saturation factors and self-saturation factors. A dual-frequency Nd∶YAG solid-state laser is built with two quarter-wave plates, and the frequency difference from 30 MHz to 1.3 GHz is obtained. On this basis, the noise power spectrum density of two orthogonally polarized modes is measured under different frequency differences, by which the coupling coefficients of gain competition between two modes are calculated. In theory, based on the Lamb′s semiclassical laser theory, the coupling coefficient expression is deduced, and the trend that the coupling coefficient decreases with the increasing of frequency difference is verified. The factors influencing the coupling coefficient are analyzed. It provides the theoretical foundation for further optimization of dual-frequency solid-state laser.

投稿润色
补充资料

中图分类号:TN248

DOI:10.3788/aos201737.0714002

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(61275053)

收稿日期:2017-03-05

修改稿日期:2017-03-16

网络出版日期:--

作者单位    点击查看

程丽君:北京理工大学光电学院, 北京 100081
杨苏辉:北京理工大学光电学院, 北京 100081精密光电测试仪器及技术北京市重点实验室, 北京 100081
赵长明:北京理工大学光电学院, 北京 100081
张海洋:北京理工大学光电学院, 北京 100081

联系人作者:程丽君(chenglijun202@126.com)

备注:程丽君(1989-),女,博士研究生,主要从事固体激光器方面的研究。

【1】He T, Yang S H, Zhao C M, et al. High power amplification of tunable optically carried RF signals by a diode pumped Yb3+doped LMA silicon fiber[J]. Laser Physics Letters, 2015, 12(3): 035101.

【2】Zheng Z, Zhao C M, Zhang H Y, et al. Phase noise reduction by using dual-frequency laser in coherent detection[J]. Optics & Laser Technology, 2016, 80: 169-175.

【3】Kang Y, Cheng L J, Yang S H, et al. 50 W low noise dual-frequency laser fiber power amplifier[J]. Optics Express, 2016, 24(9): 9202-9208.

【4】Brunel M, Bretenaker F, Floch A L. Tunable optical microwave source using spatially resolved laser eigenstates[J]. Optics Letters, 1997, 22(6): 384-386.

【5】Loas G, Romanelli M, Alouini M. Dual-frequency 780 nm Ti:Sa laser for high spectral purity tunable CW THz generation[J]. IEEE Photonics Technology Letters, 2014, 26(15): 1518-1521.

【6】Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15): 17673-17678.

【7】Rolland A, Frein L, Vallet M, et al. 40 GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.

【8】Brunel M, Emile O, Bretenaker F, et al. Tunable two-frequency lasers for lifetime measurements[J]. Optical Review, 1997, 4(5): 550-552.

【9】Li Lei, Zhao Changming, Zhang Peng, et al. The study on diode-pumped two-frequency solid-state laser with tunable frequency difference[J]. Acta Physica Sinica, 2007, 56(5): 2663-2669.
李 磊, 赵长明, 张 鹏, 等. 激光二极管抽运频差可调谐双频固体激光器的研究[J]. 物理学报, 2007, 56(5): 2663-2669.

【10】Otsuka K, Mandel P, Bielawski S, et al. Alternate time scale in multimode lasers[J]. Physics Review A, 1992, 46(3): 1692-1695.

【11】Sargent III M, Scully M O, Lamb W E. Laser physics[M]. 6th ed. Oxford: Westview Press, 1993: 96.

【12】Brunel M, Amon A, Vallet M. Dual-polarization microchip laser at 1.53 μm[J]. Optics Letters, 2005, 30(18): 2418-2420.

【13】Lacot E, Stoeckel F. Nonlinear mode coupling in a microchip laser[J]. Journal of the Optical Society of America B, 1996, 13(9): 2034-2040.

【14】Tang C L, Statz H, Demars G. Spectral output and spiking behavior of solid-state lasers[J]. Journal of Applied Physics, 1963, 34(8): 2289-2295.

【15】Wiesenfeld K, Bracikowski C, James G, et al. Observation of antiphase states in a multimode laser[J]. Physical Review Letters, 1990, 65(14): 1749-1752.

【16】Park J D, Mkay A, Dawes J M. Effect of gain anisotropy on low-frequency dynamics in four-level solid-state lasers[J]. Optics Express, 2009, 17(8): 6053-6058.

引用该论文

Cheng Lijun,Yang Suhui,Zhao Changming,Zhang Haiyang. Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers[J]. Acta Optica Sinica, 2017, 37(7): 0714002

程丽君,杨苏辉,赵长明,张海洋. 固体激光器中正交偏振模式间增益竞争的研究[J]. 光学学报, 2017, 37(7): 0714002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF