首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:81402--1)

精密光学教学中基于超稳腔实现窄线宽性能的方法

Realization of Narrow Linewidth Property Based on Ultra-Stable Cavity in Precision Optics Teaching

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于半导体激光器, 使用零膨胀系数材料制成超稳腔来实现窄线宽激光输出。激光二级管与光栅构成Littrow外腔, 一级衍射后, 小部分输出光用来锁定超稳腔, 实现了激光的线宽压窄, 大部分输出光注入到锥形放大器中, 实现光功率放大。最终获得波长为1064 nm、输出功率为290 mW、线宽为10 kHz的激光输出。该技术可应用于原子、分子精密光谱领域。

Abstract

Based on semiconductor lasers, the zero-expansion coefficient material is employed to build an ultra-stable cavity which is used to realize a narrow linewidth laser output. A laser diode and a grating are combined to form a Littrow structural external-cavity. After the first order diffraction, a small part of the output beam is used to lock the ultra-stable cavity which realizes the linewidth narrowing, and most of the output beam is injected into a tapered amplifier to achieve an amplification of optical power. A laser output with the wavelength of 1064 nm, output power of 290 mW and linewidth of 10 kHz is finally acquired. This technique can be applied in the area of atomic and molecular precision spectroscopy.

投稿润色
补充资料

中图分类号:TN242

DOI:10.3788/lop54.081402

所属栏目:激光器与激光光学

基金项目:中央高校基本科研业务费专项资金(BLX2015-09)、国家自然科学基金(11504022)、国家自然科学基金重点项目(31530084)

收稿日期:2017-01-19

修改稿日期:2017-01-25

网络出版日期:--

作者单位    点击查看

彭瑜:北京林业大学理学院, 北京 100083
施清平:北京宇航系统工程研究所, 北京 100076
霍虎:北京林业大学理学院, 北京 100083
李伟:中国南方工业研究院, 北京 100089

联系人作者:彭瑜(pengyu@bjfu.edu.cn)

备注:彭瑜(1980-), 男, 博士, 讲师, 主要从事激光应用、量子存储、零折射率超材料等方面的研究。

【1】Liu K, Littman M G. Novel geometry for single-mode scanning of tunable lasers[J]. Optics Letters, 1981, 6(3): 117-118.

【2】Dringshoff K, Ernsting I, Rinkleff R H, et al. Low-noise, tunable diode laser for ultra-high-resolution spectroscopy[J]. Optics Letters, 2007, 32(19): 2876-2878.

【3】Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback[J]. Optics Letters, 1987, 12(11): 876-878.

【4】He Y, Orr B J. Robust tunable single-frequency operation of a diode laser by a self-pumped phase conjugate reflector and a high-finesse filter[J]. Optics Letters, 2008, 33(20): 2368-2370.

【5】Ludlow A D, Zelevinsky T, Campbell G K, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.

【6】Teufel J D, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature, 2011, 475(7356): 359-363.

【7】Cagnoli G, Gammaitoni L, Hough J, et al. Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors[J]. Physical Review Letters, 2000, 85(12): 2442-2445.

【8】Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

【9】Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

【10】Bohnet J G, Chen Z L, Weiner J M, et al. A steady-state superradiant laser with less than one intracavity photon[J]. Nature, 2012, 484(7392): 78-81.

【11】Jen H H. Superradiant laser: Effect of long-ranged dipole-dipole interaction[J]. Physical Review A, 2016, 94(5): 053813.

【12】Norcia M A, Winchester M N, Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2016, 2(10): e1601231.

【13】Bohnet J G, Chen Z L, Weiner J M, et al. Linear-response theory for superradiant lasers[J]. Physical Review A, 2014, 89(1): 013806.

【14】Norcia M A, Thompson J K. Cold-strontium laser in the superradiant crossover regime[J]. Physical Review X, 2016, 6(1): 011025.

【15】Jahnke F, Gies C, Abmann M, et al. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers[J]. Nature Communications, 2016, 7: 11540.

【16】Peng Yu, Liu Pengfei, Li Wei. Bad-cavity Raman laser based on lattice-trapped cesium atoms[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041402.
彭 瑜, 刘鹏飞, 李 伟. 基于铯原子的坏腔拉曼激光器研究[J]. 激光与光电子学进展, 2016, 53(4): 041402.

【17】Peng Yu, Liu Pengfei, Li Wei. Spin-spin correlation of a bad-cavity Raman laser based on caesium atoms[J]. Laser & Optoelectronics Progress, 2016, 53(2): 021401.
彭 瑜, 刘鹏飞, 李 伟. 基于坏腔拉曼激光器的铯原子自旋相关效应研究[J]. 激光与光电子学进展, 2016, 53(2): 021401.

【18】Peng Yu. Simulating the three-dimensional image of cold atomic cloud[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 4130-4134.
彭 瑜. 冷原子的三维图像模拟[J]. 光谱学与光谱分析, 2016, 36(12): 4130-4134.

引用该论文

Peng Yu,Shi Qingping,Huo Hu,Li Wei. Realization of Narrow Linewidth Property Based on Ultra-Stable Cavity in Precision Optics Teaching[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081402

彭瑜,施清平,霍虎,李伟. 精密光学教学中基于超稳腔实现窄线宽性能的方法[J]. 激光与光电子学进展, 2017, 54(8): 081402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF