首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:81901--1)

宇称-时间对称纵向势垒中光孤子的传播特性

Propagation Characteristics of Optical Solitons in Parity-Time Symmetric Potentials with Longitudinal Barriers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过数值仿真, 研究了空间孤子在经过一个宇称-时间(PT)对称纵向势垒之后的动态传播特性。仿真结果表明, 空间孤子穿越势垒之后有一个横向的偏折。偏折角度与PT对称势垒的增益/损耗项、调制深度以及纵向宽度有关, 增益/损耗项对空间孤子的动态特性有重要的影响。此外, 空间孤子在经过一个PT对称势垒之后会得到能量上的增益, 增益大小与偏折角度有密切的关系。通过调整势垒参数可以控制偏折的角度, 这使得空间孤子在光开关、光通信等众多领域中具有巨大的应用前景。

Abstract

Dynamical propagation characteristics of spatial solitons after passing a parity-time (PT) symmetric potential with a longitudinal barrier is investigated by numerical simulation.The simulation results show that a spatial soliton transversally deflects after transmitting through the barrier. The deflection angle is related to the gain/loss coefficient, the modulation depth and the longitudinal dimension of the PT symmetric potential barrier. The gain/loss coefficient shows an important influence on the dynamical propagation characteristics of spatial solitons. Besides, after passing a PT symmetric potential barrier, the spatial soliton obtains an energy gain whose value is closely related to the deflection angle. By adjusting the barrier parameters, the deflection angle can be controlled. This makes spatial solitons have a great application potential in many fields such as optical switch and optical communications.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/lop54.081901

所属栏目:非线性光学

基金项目:国家自然科学基金(61675184,61275124,61405178,61205121)

收稿日期:2017-02-20

修改稿日期:2017-03-17

网络出版日期:--

作者单位    点击查看

李屹磊:浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023
覃亚丽:浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023
毛盛益:浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023
杨斌:浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023
任宏亮:浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023

联系人作者:李屹磊(404887688@qq.com)

备注:李屹磊(1992-), 男, 硕士研究生, 主要从事光孤子及非线性光学方面的研究。

【1】Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beam[J]. Physical Review Letters,1964,13: 479-484.

【2】Kivshar Y S, Agrawal G P. Optical solitons: From fibers to photonic crystals[M]. San Diego: Academic Press, 2003: 3-5.

【3】Zhang Jiefang, Zhao Bi, Hu Wencheng, et al. Interaction propagation of optical vortex solitons in inhomogeneous nonlinear waveguides[J]. Acta Optica Sinica, 2013, 33(4): 0419001.
张解放, 赵 辟, 胡文成, 等. 非均匀非线性波导中涡旋光孤子的相互作用传播[J]. 光学学报, 2013, 33(4): 0419001.

【4】Yu Wensu, Qin Yali, Ren Hongliang, et al. Research on ring-like vortex solitons in Bessel lattices[J]. Acta Optica Sinica, 2014, 34(7): 0719001.
余文愫, 覃亚丽, 任宏亮, 等. 贝塞尔晶格中环状涡旋孤子的研究[J]. 光学学报, 2014, 34(7): 0719001.

【5】Yan Man, Qin Yali, Liu Xian, et al. Propagation of double-charge vortex beam in a negative defect photonic lattice[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081904.
鄢 曼, 覃亚丽, 刘 鲜, 等. 二阶涡旋光束在负缺陷晶格中的传输[J]. 激光与光电子学进展, 2015, 52(8): 081904.

【6】Yang Bin, Qin Yali, Liu Xian, et al. Research on dipole solitons in optically induced lattices[J]. Acta Optica Sinica, 2015, 35(7): 0719001.
杨 斌, 覃亚丽, 刘 鲜, 等. 光诱导晶格中偶极孤子的研究[J]. 光学学报, 2015, 35(7): 0719001.

【7】Dong L W, Ye F W. Stability of multipole-mode solitons in thermal nonlinear media[J]. Physical Review A, 2010, 81(1): 013815.

【8】Wen Z C, Yan Z Y. Dynamical behaviors of optical solitons in parity-time (PT) symmetric sextic anharmonic double-well potentials[J]. Physical Letters A, 2015, 379(36): 2025-2029.

【9】Musslimani Z H, Makris K G, El-Ganainy R, et al. Optical solitons in PT periodic potentials[J]. Physical Review Letters, 2008, 100: 030402.

【10】Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry[J]. Physical Review Letters, 1998, 80: 5243-5246.

【11】Guo A, Salamo G J, Duchesne D, et al. Observation of PT-symmetric breaking in complex optical potentials[J]. Physical Review Letters, 2009, 103: 093902.

【12】Rueter C E, Makris K G, EI-Ganainy R, et al. Observation of parity-time symmetry in optics[J]. Nature Physics, 2010, 6: 192-195.

【13】Hu S, Ma X, Lu D, et al. Solitons supported by complex PT-symmetric Gaussian potentials[J]. Physical Review A, 2011, 84(4): 21098-21108.

【14】Hu S, Ma X, Lu D, et al. Defect solitons in parity-time symmetric optical lattices with nonlocal nonlinearity[J]. Physical Review A, 2012, 85(4): 2212-2222.

【15】Fang L, Gao J, Shi Z, et al. Nonlocal defect solitons in parity-time-symmetric superlattices with defocusing nonlinearity[J]. The European Physical Journal D, 2014, 68(10): 1-5.

【16】Liu S, Ma C, Zhang Y, et al. Bragg gap solitons in PT symmetric lattices with competing nonlinearity[J]. Optics Communications, 2012, 285(7): 1934-1939.

【17】Zhou Bozhen, Hua Chunbo, Xu Siliu, et al. Optical vortex soliton in parity-time symmetric potentials[J]. Chinese J Lasers, 2015, 42(5): 0505004.
周博臻, 花春波, 徐四六, 等. PT对称晶格势中涡旋光孤子[J]. 中国激光, 2015, 42(5): 0505004.

【18】Achilleos V, Kevrekidis P G, Frantzeskakis D J, et al. Dark solitons and vortices in PT-symmetric nonlinear media: From spontaneous symmetry breaking to nonlinear PT phase transitions[J]. Physical Review A, 2012, 86(1): 013808.

【19】Kartashov Y V, Malomed B A, Torner L. Unbreakable PT symmetry of solitons supported by inhomogeneous defocusing nonlinearity[J]. Optics Letters, 2014, 39(19): 5641-5644.

【20】Khawaja U Al, Al-marzoug S M, Bahlouli H, et al. Unidirectional soliton flows in PT-symmetric potentials[J]. Physical Review A, 2013, 88(2): 023830.

【21】Zhou K, Wei T, Sun H, et al. Soliton dynamics in a PT-symmetric optical lattice with a longitudinal potential barrier[J]. Optics Express, 2015, 23(13): 16903-16911.

引用该论文

Li Yilei,Qin Yali,Mao Shengyi,Yang Bin,Ren Hongliang. Propagation Characteristics of Optical Solitons in Parity-Time Symmetric Potentials with Longitudinal Barriers[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081901

李屹磊,覃亚丽,毛盛益,杨斌,任宏亮. 宇称-时间对称纵向势垒中光孤子的传播特性[J]. 激光与光电子学进展, 2017, 54(8): 081901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF