首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:81406--1)

基于π相移光纤布拉格光栅的窄线宽掺铒光纤激光器

Narrow Linewidth Erbium-Doped Fiber Laser with a π Phase-Shifted Fiber Bragg Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

窄线宽掺铒光纤激光器具有线宽窄、噪声低等优点, 在光纤通信、光纤传感、相干探测和合成等方面有广泛的应用。利用自行设计并制作的π相移光纤光栅和高反射率光纤布拉格光栅(FBG), 搭建了环形腔掺铒光纤激光器, 利用π相移光纤光栅的窄带滤波特性实现了1.5 μm波段的窄线宽掺铒光纤激光输出。当980 nm半导体激光抽运功率为5 W时, 激光输出功率为1.006 W, 光-光转换效率大于20%, 中心波长为1549.45 nm, 激光线宽为5.32 pm。输出光没有残余抽运光, 表明继续增加抽运光功率可以进一步提升激光功率。通过优化设计π相移光纤光栅的透射峰带宽、FBG的反射谱和激光腔结构, 有望实现高效、高功率的单纵模激光输出。

Abstract

Erbium-doped fiber lasers have wide applications in fiber communication, fiber sensors, coherent detection and combination because of its narrow linewidth and low noise. An erbium-doped fiber laser with ring cavity is constructed by a self-designed π phase-shifted fiber grating and a high-reflective fiber Bragg grating (FBG), which can achieve narrow linewidth erbium-doped fiber laser output in 1.5 μm-band by utilizing the π phase-shifted fiber grating as a narrowband filter. When the pump power of 980 nm diode laser is 5 W, the laser output power is 1.006 W, the optical to optical efficiency is more than 20%, and the central wavelength is 1549.45 nm with laser linewidth of 5.32 pm. The output light is without residual pump, which indicates that the laser power can be further increased by increasing pump power. High-efficiency, high power, single-longitudinal-mode laser can be achieved by optimizing the bandwidth of transmission peak of π phase-shifted fiber grating, the reflectance spectrum of FBG, and the structure of the laser cavity.

投稿润色
补充资料

中图分类号:TN24

DOI:10.3788/lop54.081406

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(11274385)

收稿日期:2017-04-07

修改稿日期:2017-04-17

网络出版日期:--

作者单位    点击查看

孙俊杰:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
王泽锋:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
王蒙:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
曹涧秋:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
陈金宝:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073

联系人作者:孙俊杰(15143115236@163.com)

备注:孙俊杰(1994-), 女, 硕士研究生, 主要从事光纤器件应用方面的研究。

【1】Koshikiya Y, Fan X, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18): 3287-3294.

【2】Wan Hongdan, Lu Zhiming, Hu Taoping. A high power, single-frequency, narrow linewidth fiber laser based on an active double-ring cavity[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071401.
万洪丹, 鲁志明, 胡涛平. 基于注入式有源双环腔的高功率单频窄线宽光纤激光器[J]. 激光与光电子学进展, 2015, 52(7): 071401.

【3】Xu Dan, Lu Bin, Yang Fei, et al. Narrow linewidth single-frequency laser noise measurement based on a 3×3 fiber coupler[J]. Chinese J Lasers, 2016, 43(1): 0102004.
徐 丹, 卢 斌, 杨 飞, 等. 基于3×3耦合器的窄线宽单频激光器噪声测量技术[J]. 中国激光, 2016, 43(1): 0102004.

【4】Zhang Xiaoqing, Jia Yudong, Dong Jianjing. Design of Brillouin frequency shifter based on ring cavity structure of optical fiber[J]. Acta Optica Sinica, 2016, 36(12): 1214007.
张晓青, 贾豫东, 董建晶. 基于光纤环形腔结构的布里渊频移器设计[J]. 光学学报, 2016, 36(12): 1214007.

【5】Liu F N, Jia X J, Liu Y G, et al. Enhancing coherent combining efficiency via choosing appropriate lasing wavelength in a Michelson compound cavity based on two 3 dB fibre loop mirrors and one fibre Bragg grating[J]. Chinese Physics Letters, 2007, 24(4): 929-932.

【6】Kringlebotn J T, Archambault J L, Reekie L, et al. Er3+∶Yb3+-codoped fiber distributed-feedback laser[J]. Optics Letters, 1994, 19(24): 2101-2103.

【7】Wu L, Pei L, Liu C, et al. Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism[J]. Optics & Laser Technology, 2016, 79: 15-19.

【8】Malara P, Campanella C E, de Leonardis F, et al. Enhanced spectral response of π-phase shifted fiber Bragg gratings in closed-loop configuration[J]. Optics Letters, 2015, 40(9): 2124-2126.

【9】Guo J, Yang C. Highlystabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection[J]. IEEE Photonics Technology Letters, 2015, 27(8): 848-851.

【10】Guy M J, Taylor J R, Kashyap R. Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter[J]. Electronics Letters, 1995, 31(22): 1924-1925.

【11】Chen X, Yao J, Zeng F, et al. Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1390-1392.

【12】Zhao Y, Chang J, Wang Q, et al. Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG[J]. Optics Express, 2013, 21(19): 22515-22522.

【13】Kogelnik H. Filter response of nonuniform almost-periodic structures[J]. Bell Labs Technical Journal, 1976, 55(1): 109-126.

【14】Yamada M, Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach[J]. Applied Optics, 1987, 26(16): 3474-3478.

【15】Weller-Brophy L A, Hall D G. Analysis of waveguide gratings: Application of Rouard′s method[J]. Journal of the Optical Society of America A, 1985, 2(6): 863-871.

【16】Zhou Shaoling. Theoretical analysis on characteristics of phased-shifted fiber grating[J]. Optical Communication Technology, 2003, 27(4): 47-49.
周少玲. 相移光纤光栅特性分析[J]. 光通信技术, 2003, 27(4): 47-49.

【17】Wang M, Zhang Y J, Wang Z F. Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers[J]. Optics Express, 2017, 25(2): 1529-1534.

引用该论文

Sun Junjie,Wang Zefeng,Wang Meng,Cao Jianqiu,Chen Jinbao. Narrow Linewidth Erbium-Doped Fiber Laser with a π Phase-Shifted Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081406

孙俊杰,王泽锋,王蒙,曹涧秋,陈金宝. 基于π相移光纤布拉格光栅的窄线宽掺铒光纤激光器[J]. 激光与光电子学进展, 2017, 54(8): 081406

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF