首页 > 论文 > 光学学报 > 37卷 > 8期(pp:811002--1)

基于散斑照明和全息的穿透散射介质成像

Imaging Through Turbid Media Based on Speckled Illumination and Holography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

目前, 穿透散射介质的成像技术因其在生物医学成像和安防领域的巨大应用价值而受到广泛关注。虽然存在不同穿透散射介质的成像技术, 但实现实时成像依然存在问题。提出了一种结合散斑照明、傅里叶全息成像和浴帘效应的快速穿透散射介质成像方法。该方法对单幅原始散斑图像进行一次傅里叶变换运算就可以恢复隐藏物体的信息,简单的图像处理过程使得系统具备实时成像的能力。从理论和实验上, 对该方法的非侵入、实时成像能力进行了验证, 成功地对隐藏在散射体之间的物体进行了探测, 并实现了实时成像。另外, 也给出了物体尺寸的计算公式。该方法有利于推动对抗散射成像技术的实用化。

Abstract

Imaging technology through scattering materials has been attracting a wide research interest because of its application values in medical imaging and security. Although different technologies have been proposed to conquer the scattering disturbance, it is still a challenge to achieve real-time imaging. A method for fast imaging through scattering medium is presented based on the speckle illumination, Fourier holography and curtain effect. The information of the hidden object can be recovered by a Fourier transform to a single original speckle image. The simple image processing makes the system has the capability of real-time imaging. The non-invasive real-time imaging ability of the proposed method is verified both theoretically and experimentally. The object hidden between scatters is reconstructed successfully and real-time imaging is realized. In addition, a formula for calculating the size of the object is provided. The proposed method can promote the practical application of imaging through turbid media.

投稿润色
补充资料

中图分类号:O438

DOI:10.3788/aos201737.0811002

所属栏目:成像系统

基金项目:国家自然科学基金(61605092, 6157509,11474169)、天津市自然科学基金(15JCYBJC16900), 山西大学量子光学与光量子器件国家重点实验室开放课题(KF201605)

收稿日期:2017-01-16

修改稿日期:2017-03-30

网络出版日期:--

作者单位    点击查看

梁 子:南开大学现代光学研究所, 天津 300350南开大学光电信息技术科学教育部重点实验室, 天津 300350
安晓英:南开大学现代光学研究所, 天津 300350南开大学光电信息技术科学教育部重点实验室, 天津 300350
张 茹:南开大学现代光学研究所, 天津 300350南开大学光电信息技术科学教育部重点实验室, 天津 300350
宋丽培:南开大学现代光学研究所, 天津 300350南开大学光电信息技术科学教育部重点实验室, 天津 300350
朱松河:南开大学现代光学研究所, 天津 300350南开大学光电信息技术科学教育部重点实验室, 天津 300350
武鹏飞:南开大学现代光学研究所, 天津 300350南开大学光电信息技术科学教育部重点实验室, 天津 300350

联系人作者:梁子(2120140200@mail.nankai.edu.cn)

备注:梁 子(1990-), 男, 硕士研究生, 主要从事光学成像方面的研究。

【1】Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Phys Rev Lett, 2004, 93(9): 093602.

【2】Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Appl Phys Lett, 2011, 98(11): 111115.

【3】Chen X H, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light[J]. Opt Lett, 2009, 34(5): 695-697.

【4】Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Opt Express, 2015, 23(26): 32993-33000.

【5】Zhang Minghui,Wei Qing, Shen Xia, et al. Statistical optics based numerical modeling of ghost imaging and its experimental approva[J]. Acta Optica Sinica, 2007, 27(10): 1858-1866.
张明辉, 魏 青, 沈 夏, 等. 基于统计光学的无透镜鬼成像数值模拟与实验验证[J]. 光学学报, 2007, 27(10): 1858-1866.

【6】Kolenderska S M, Katz O, Fink M, et al. Scanning-free imaging through a single fiber by random spatio-spectral encoding[J]. Opt Lett, 2014, 40(4): 534-537.

【7】Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Opt Express, 2007, 15(21): 14013-14027.

【8】Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Opt Express, 2010, 18(20): 20723-20731.

【9】Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nat Photonics, 2012, 6(5): 283-292.

【10】Nixon M, Katz O, Small E, et al. Real-time wavefront-shaping through scattering media by all optical feedback[J]. Nat Photonics, 2013, 7(11): 919-924.

【11】Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nat Photonics, 2012, 6(8): 549-553.

【12】Harm W, Roider C, Jesacher A, et al. Lensless imaging through thin diffusive media[J]. Opt Express, 2014, 22(18): 22146-22156.

【13】Singh A K, Naik D N, Pedrini G, et al. Looking through a diffuser and around an opaque surface: a holographic approach[J]. Opt Express, 2014, 22(7): 7694-7701.

【14】Purcell M J, Kumar M, Rand S C, et al. Holographic imaging through a scattering medium by diffuser-aided statistical averaging[J]. J Opt Soc Am A, 2016, 33(7): 1291-1297.

【15】Zhang Y, Situ G, Pedrini G, et al. Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium[J]. Opt Commun, 2013, 286(1): 56-59.

【16】Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography of microspheres.[J]. Appl Opt, 2002, 41(25): 5367-5375.

【17】Verrier N, Cotmellec S, Brunel M, et al. Digital in-line holography in thick optical systems: application to visualization in pipes[J]. Appl Opt, 2008, 47(22): 4147-4157.

【18】Graulig C, Kanka M, Riesenberg R. Phase shifting technique for extended inline holographic microscopy with a pinhole array[J]. Opt Express, 2012, 20(20): 22383-22390.

【19】Tyo J S. Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging[J]. J Opt Soc Am A, 2000, 17(1): 1-10.

【20】Tyo J S, Rowe M P, Jr P E, et al. Target detection in optically scattering media by polarization-difference imaging[J]. Appl Opt, 1996, 35(11): 1855-1870.

【21】Morgan S P, Khong M P, Somekh M G. Effects of polarization state and scatterer concentration on optical imaging through scattering media[J]. Appl Opt, 1997, 36(7): 1560-1565.

【22】Bertolotti J, Putten E G V, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

【23】Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via, speckle correlations[J]. Nat Photonics, 2014, 8(10): 784-790.

【24】Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1): 71-74.

【25】Fienup J R. Phase retrieval algorithms: a comparison[J]. Appl Opt, 1982, 21(15): 2758-2769.

【26】Ji Jin, Huang Fei, Wang Liang, et al. Information encryption based on digital holography and phase retrieve algorithm[J]. Chinese J Lasers. 2007, 34(10): 1408-1412.
季 瑾, 黄 飞, 王 亮, 等. 利用数字全息和相位恢复算法实现信息加密[J]. 中国激光, 2007, 34(10): 1408-1412.

【27】Apostol A, Dogariu A. Spatial correlations in the near field of random media[J]. Phys Rev Lett, 2003, 91(9): 9105-9117.

【28】Carminati R. Subwavelength spatial correlations in near-field speckle patterns[J]. Phys Rev A, 2010, 81(5): 1532-1532.

【29】Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect[J]. Appl Opt, 1998, 37(27): 6495-6499.

【30】Goodman J W. Statisticalproperties of laser speckle patterns[M]. Heidelberg: Springer, 1975.

【31】Kirkpatrick S J, Duncan D D, Wells-Gray E M. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging[J]. Opt Lett, 2009, 33(24): 2886-2888.

引用该论文

Liang Zi,An Xiaoying,Zhang Ru,Song Lipei,Zhu Songhe,Wu Pengfei. Imaging Through Turbid Media Based on Speckled Illumination and Holography[J]. Acta Optica Sinica, 2017, 37(8): 0811002

梁 子,安晓英,张 茹,宋丽培,朱松河,武鹏飞. 基于散斑照明和全息的穿透散射介质成像[J]. 光学学报, 2017, 37(8): 0811002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF