首页 > 论文 > 光学学报 > 37卷 > 8期(pp:810001--1)

基于目标提取与引导滤波增强的红外与可见光图像融合

Infrared and Visible Image Fusion Based on Target Extraction and Guided Filtering Enhancement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了使融合结果突出目标并发掘更多细节, 提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet变换(NSST), 并对所得低频分量进行引导滤波增强。由增强后的红外图像和可见光图像低频分量基于目标提取的融合规则得到融合图像的低频分量, 高频分量则根据方向子带信息和取大来确定。最后经NSST逆变换得到融合图像。大量实验结果表明, 本文方法在增强融合图像空间细节的同时, 有效突出了目标, 并且在信息熵、平均梯度等指标上优于基于拉普拉斯金字塔变换、基于小波变换、基于平稳小波变换、基于非下采样Contourlet变换(NSCT)、基于目标提取与NSCT变换等。

Abstract

In order to highlight the fusion result and dig out more details, a fusion method of infrared image and visible image based on the target extraction and guidance filtering enhancement is proposed. Firstly, the two-dimensional Tsallis entropy and graph-based visual saliency model are used to extract the target region of infrared image. Then the visible image and the infrared image are decomposed by non-subsampled shearlet transform (NSST), respectively. The low-frequency components of the visible image and the infrared image are enhanced with guided filtering, respectively. The low-frequency component of the fused image is obtained from the enhanced low-frequency component of the infrared image and the visible image based on the fusion rule of target extraction, and the high-frequency components of the fused image are gained according to the maximization criterion of the directional sub-band information sum. Finally, the fused image is obtained by inverse NSST transform. A large number of experimental results demonstrate that the proposed method can improve the spatial resolution of the fused image, effectively highlight the target, and is superior to the method based on the Laplacian pyramid transform, the method based on wavelet transform, the method based on stationary wavelet transform, the method based on non-subsampled contourlet transform (NSCT), the method based on target extraction and NSCT in the quantitative evaluation indexes such as information entropy and average gradient.

投稿润色
补充资料

中图分类号:TP751

DOI:10.3788/aos201737.0810001

所属栏目:图像处理

基金项目:国家自然科学基金(61573183)、南京信息工程大学江苏省大数据分析技术重点实验室开放基金资助(KXK1403)、浙江省信号处理重点实验室开放基金(ZJKL_6_SP-OP2014-02)、广西多源信息发掘与安全重点实验室开放基金(MIMS16-01)、成都理工大学国土资源部地学空间信息技术重点实验室开放基金(KLGSIT2015-05)、国土资源部成矿作用与资源评价重点实验室开放基金(ZS1406)、江苏高校优势学科建设工程

收稿日期:2017-01-20

修改稿日期:2017-03-25

网络出版日期:--

作者单位    点击查看

吴一全:南京航空航天大学电子信息工程学院, 江苏 南京 211106南京信息工程大学江苏省大数据分析技术重点实验室, 江苏 南京 210044浙江工业大学浙江省信号处理重点实验室, 浙江 杭州 310023广西师范大学广西多源信息挖掘与安全重点实验室, 广西 桂林 541004成都理工大学国土资源部地学空间信息技术重点实验室, 四川 成都 610059中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室, 北京 100037
王志来:南京航空航天大学电子信息工程学院, 江苏 南京 211106

联系人作者:吴一全(nuaaimage@163.com)

备注:吴一全(1963-), 男, 博士, 教授, 博士生导师, 主要从事遥感图像处理与理解、红外目标检测与识别、视觉检测与图像测量、数字全息等方面的研究。

【1】Wang R, Du L. Infrared and visible image fusion based on random projection and sparse representation[J]. International Journal of Remote Sensing, 2014, 35(5): 1640-1652.

【2】Zhao J, Gao X, Chen Y, et al. Multi-window visual saliency extraction for fusion of visible and infrared images[J]. Infrared Physics & Technology, 2016, 76: 295-302.

【3】Xia Yu, Qu Shiru. Color image fusion framework based on improved (2D)2 PCA[J]. Acta Optica Sinica, 2014, 34(10): 1010001.
夏 余, 曲仕茹. 改进(2D)2PCA的彩色图像融合框架[J]. 光学学报, 2014, 34(10): 1010001.

【4】Zhang Su, Fu Qiang, Duan Jin, et al. Low contrast target polarization recognition technology based on lifting wavelet[J]. Acta Optica Sinica, 2015, 35(2): 0211002.
张 肃, 付 强, 段 锦, 等. 基于提升小波的低对比度目标偏振识别技术[J]. 光学学报, 2015, 35(2): 0211002.

【5】Liu Kun, Guo Lei, Chang Weiwei. Regional feature self-adaptive image fusion algorithm based on contourlet transform[J]. Acta Optica Sinica, 2008, 28 (4): 681-686.
刘 坤, 郭 雷, 常威威. 基于Contourlet变换的区域特征自适应图像融合算法[J]. 光学学报, 2008, 28(4): 681-686.

【6】Cunha A L, Zhou J P, Do M N. The non-subsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.

【7】Guo K, Labate D. Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318.

【8】Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied & Computational Harmonic Analysis, 2008, 25(1): 25-46.

【9】Wu Yiquan, Tao Feixiang. Multispectral and panchromatic image fusion based on improved projected gradient NMF in NSST domain[J]. Acta Optica Sinica, 2015, 35(4): 0410005.
吴一全, 陶飞翔. 改进投影梯度NMF的NSST域多光谱与全色图像融合[J]. 光学学报, 2015, 35(4): 0410005.

【10】Kong W W. Technique for gray-scale visual light and infrared image fusion based on non-subsampled shearlet transform[J]. Infrared Physics & Technology, 2014, 63(11): 110-118.

【11】Guo Ming, Wang Shuman. Image fusion based on region and directional variance weighted entropy[J]. Systems Engineering & Electronics, 2013, 35(4): 720-724.
郭 明, 王书满. 基于区域和方向方差加权信息熵的图像融合[J]. 系统工程与电子技术, 2013, 35(4): 720-724.

【12】Gao Ying, Wang Amin, Zhi Pengfei, et al. Image fusion algorithm based on region segmentation and lifting wavelet transform[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 569-575.
高 颖, 王阿敏, 支朋飞, 等. 基于区域分割与提升小波变换的图像融合算法[J]. 西北工业大学学报, 2014, 32(4): 569-575.

【13】Xing Suxia, Xiao Hongbing, Chen Tianhua, et al. Study of image fusion technology based on object extraction and NSCT[J]. Journal of Optoelectronics·Laser, 2013, 24(3): 583-588.
邢素霞, 肖洪兵, 陈天华, 等. 基于目标提取与NSCT的图像融合技术研究[J]. 光电子·激光, 2013, 24(3): 583-588.

【14】Kong W, Lei Y, Ni X. Fusion technique for grey-scale visible light and infrared images based on non-subsampled contourlet transform and intensity-hue-saturation transform[J]. IET Signal Processing, 2011, 5(1): 75-80.

【15】Guo Ming, Fu Zheng, Xi Xiaoliang. Novel fusion algorithm for infrared and visible images based on local energy in NSCT domain[J]. Infrared & Laser Engineering, 2012, 41(8): 2229-2235.
郭 明, 符 拯, 奚晓梁. 基于局部能量的NSCT域红外与可见光图像融合算法[J]. 红外与激光工程, 2012, 41(8): 2229-2235.

【16】Li Jiying, Dang Jianwu, Wang Yangping. Medical image segmentation algorithm based on quantum clonal evolution and two-dimensional Tsallis entropy[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(3): 465-471.
李积英, 党建武, 王阳萍. 融合量子克隆进化与2维Tsallis熵的医学图像分割算法[J]. 计算机辅助设计与图形学学报, 2014, 26(3): 465-471.

【17】Harel J, Koch C, Perona P. Graph-based visual saliency[C]. Advances in Neural Information Processing Systems, 2007, 19: 545-552.

【18】He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(6): 1397-1409.

【19】Yin Wen, Li Yuanxiang, Zhou Zeming, et al. Remote sensing image fusion method based on sparse representation[J]. Acta Optica Sinica, 2013, 33(4): 0428003.
尹 雯, 李元祥, 周则明, 等. 基于稀疏表示的遥感图像融合方法[J]. 光学学报, 2013, 33(4): 0428003.

引用该论文

Wu Yiquan,Wang Zhilai. Infrared and Visible Image Fusion Based on Target Extraction and Guided Filtering Enhancement[J]. Acta Optica Sinica, 2017, 37(8): 0810001

吴一全,王志来. 基于目标提取与引导滤波增强的红外与可见光图像融合[J]. 光学学报, 2017, 37(8): 0810001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF