首页 > 论文 > 光学学报 > 37卷 > 8期(pp:811001--1)

双路四通道同时干涉成像光谱仪

Dual Four-Channel Simultaneous Interference Imaging Spectrometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

双路四通道同时干涉成像光谱仪以视场光阑代替狭缝, 无旋转和移动部件, 通过消色差分光棱镜和Savart偏光镜将入射光分为四对相干光束, 同时在探测器上获取四幅不同偏振信息的目标图像, 进而利用傅里叶变换运算并对数据进行处理得到偏振光谱图像。分析系统结构和原理得出不同偏振状态下的干涉强度表达式, 四幅干涉图相加获取目标图像的总强度, 同一Savart偏光镜的干涉强度相减获得纯干涉条纹, 将两纯干涉条纹进行加减运算可降低系统的背景噪声, 提高了系统信噪比。在考虑晶体色散关系的基础上分析讨论了光程差随波长、入射角、入射面与晶体主截面夹角以及晶体厚度的变化, 在傍轴条件下设计出横向剪切量、成像透镜焦距和晶体厚度的具体参数, 实现了高光谱分辨率成像, 为新型干涉成像光谱仪的设计与应用提供了一种新方案。

Abstract

The dual four-channel simultaneous interference imaging spectrometer, using a field view stop instead of the slit filter, without rotating and moving parts, divides the incident light into four coherent beams through achromatic beam splitters and Savart polariscopes. Four interference fringes with different polarization informations are obtained in the detectors. Spectral images can be acquired with the Fourier transform algorithm and image processing. Expressions for interference intensities are presented. The total intensity of the target image is obtained by summation of the four interferograms. The difference between interference intensities in the same CCD is equivalent to the pure interference fringes. The difference or summation of two pure interference fringes of different CCDs is equivalent to the single-channel interference fringes, which improves the signal-noise ration of the system. The optical path differences varying with wavelength, incidence angle, incident azimuth angle and Savart polariscope thickness are described based on the analysis of dispersing result from crystal. Considering the paraxial approximation, the fringe distribution is analyzed, and then the lateral displacement and the focal length of the lens are designed. The thickness of the crystal is discussed. This spectrometer is characterized by the simultaneous acquisition of four target images with different polarization informations. The background intensity is suppressed, and the spatial filtering and the jitter noise caused by moving or rotating parts are avoided. The results show that high resolution imaging is realized. This study provides a new solution for the design and application of interference imaging spectroscopy.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/aos201737.0811001

所属栏目:成像系统

基金项目:国家自然科学基金(11104160)、曲阜师范大学引进人才科研启动项目(20130760)

收稿日期:2017-03-01

修改稿日期:2017-03-30

网络出版日期:--

作者单位    点击查看

步苗苗:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
牛明生:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
王 田:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
韩培高:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
郝殿中:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
马丽丽:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
宋连科:曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165

联系人作者:步苗苗(kuaile44gaogao@163.com)

备注:步苗苗(1991-), 女, 硕士研究生, 主要从事偏光技术与应用方面的研究。

【1】Xue Qingsheng, Duan Minzheng. Development of limb imaging spectrometer for atmospheric trace gas sounding[J]. Acta Optica Sinica, 2013, 33(5): 0522001.
薛庆生, 段民征. 用于大气痕量气体探测的临边成像光谱仪[J]. 光学学报, 2013, 33(5): 0522001.

【2】Pust N J, Shaw J A. Wavelength dependence of the degree of polarization in cloud-free skies: Simulations of real environments[J]. Opt Express, 2012, 20(14): 15559-15568.

【3】Groner W, Winkelman J W, Harris A G, et al. Orthogonal polarization spectral imaging: A new method for study of the microcirculation[J]. Nat Med, 1999, 5(10): 1209-1212.

【4】Jacques S L. Video imaging of superficial biological tissue layers using polarized light: US6177984[P]. 2001-06-23.

【5】Zhang Yue, Zhang Zhuo, Su Yun, et al. Cooling system design for cryogenic imaging spectrometer with wide spectrum and high resolution[J]. Infrared and Laser Engineering, 2016, 45(3): 0323001.
张 月, 张 琢, 苏 云, 等. 宽谱段高分辨率低温成像光谱仪制冷系统设计[J]. 红外与激光工程, 2016, 45(3): 0323001.

【6】Lu X, Qin M, Xie P H, et al. Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy[J]. Chin Phys B, 2016, 25(2): 024210.

【7】Perreault J D. Triple Wollaston-prism complete-Stokes imagingpolarimeter[J]. Opt Lett, 2013, 38(19): 3874-3877.

【8】Persky M J. A review of spaceborne Fourier transform spectrometer for remote sensing[J]. Rev Sci Instrum, 1995, 66(10): 4763-4797.

【9】Xiangli Bin, Zhao Baochang, Xue Mingqiu. Spatially modulated imaging interferometry[J]. Acta Optica Sinica, 1998, 18(1): 18-22.
相里斌, 赵葆常, 薛鸣球. 空间调制干涉成像光谱技术[J]. 光学学报, 1998, 18(1): 18-22.

【10】Mu Tingkui, Zhang Chunmin, Li Qiwei, et al. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation[J]. Acta Physica Sinica, 2014, 63(11): 110704.
穆廷魁, 张淳民, 李祺伟, 等. 差分偏振干涉成像光谱仪I. 概念原理与操作[J]. 物理学报, 2014, 63(11): 110704.

【11】Jian Xiaohua, Zhang Chunmin, Zhu Baohui, et al. The data processing method of the temporarily and spatially mixed modulated polarization interference imaging spectrometer[J]. Acta Physica Sinica, 2010, 59(9): 6131-6137.
简小华, 张淳民, 祝宝辉, 等. 时空混合调制型偏振干涉成像光谱仪数据处理研究[J]. 物理学报, 2010, 59(9): 6131-6137.

【12】Bai C X, Li J X, Shen Y, et al. Birefringent Fourier transform imaging spectrometer with a rotating retroreflector[J]. Opt Lett, 2016, 41(15): 3647-3650.

【13】Li J, Gao B, Qi C, et al. Tests of a compact static Fourier-transform imaging spectropolarimeter[J]. Opt Express, 2014, 22(11): 13014-13021.

【14】Quan Naicheng, Zhang Chunmin, Mu Tingkui. Channeled spectropolarimetry based on division of aperture and field of view[J]. Acta Physica Sinica, 2016, 65(8): 080703.
权乃承, 张淳民, 穆廷魁. 基于孔径分割与视场分割的通道型成像光谱偏振技术[J]. 物理学报, 2016, 65(8): 080703.

【15】Pezzaniti J L, Chenault D B. A division of aperture MWIR imaging polarimeter[C]. SPIE, 2005, 5888: 58880V.

【16】Pezzaniti J L, Chenault D, Roche M, et al. Wave slope measurement using imaging polarimetry[C]. SPIE, 2009, 7317: 73170B.

【17】Nordin G P, Meier J T, Deguzman P C, et al. Micropolarizer array of infrared imaging polarimetry[J]. Journal of the Optical Society of America, 1999, 16(5): 1168-1174.

【18】Kituta H, Nunatal K, Arimitsu H, et al. Imaging polarimetry with a micro-retarder array[C]. Proceedings of the 41st SICE Annual Conference, Tokyo, 2002, 4: 2510-2511.

【19】Craven-Jones J, Kudenov M W, Stapelbroek M G, et al. Infrared hyperspectral imaging polarimeter using birefringent prisms[J]. Appl Opt, 2011, 50(8): 1170-1185.

【20】Mu Tingkui, Zhang Chunmin, Ren Wenyi, et al. Design and analysis of a polarization interference imaging spectrometer with expanded field of view[J]. Acta Physica Sinica, 2011, 60(7): 070704.
穆廷魁, 张淳民, 任文艺, 等. 偏振干涉成像光谱仪的视场展宽设计与分析[J]. 物理学报, 2011, 60(7): 070704.

【21】Chen Xiyuan, Shan Ming. Dispersion formula of calcite[J]. Opto-Electronic Engineering, 2007, 34(5): 38-42.
陈西园, 单 明. 方解石晶体色散方程的研究[J]. 光电工程, 2007, 34(5): 38-42.

【22】Song Lianke, Hao Dianzhong. Study of quartz crystal’s birefringence dispersion character from ultraviolet band to near infrared band[J]. Optical Technique, 2005, 31(5): 679-683.
宋连科, 郝殿中. 石英晶体双折射率紫外至近红外波段色散特性实验的研究[J]. 光学技术, 2005, 31(5): 679-683.

引用该论文

Bu Miaomiao,Niu Mingsheng,Wang Tian,Han Peigao,Hao Dianzhong,Ma Lili,Song Lianke. Dual Four-Channel Simultaneous Interference Imaging Spectrometer[J]. Acta Optica Sinica, 2017, 37(8): 0811001

步苗苗,牛明生,王 田,韩培高,郝殿中,马丽丽,宋连科. 双路四通道同时干涉成像光谱仪[J]. 光学学报, 2017, 37(8): 0811001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF