首页 > 论文 > 中国激光 > 44卷 > 8期(pp:805003--1)

慧差光束通过海洋湍流的传输特性

Characteristics of Coma Beams Propagation through Oceanic Turbulence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着水下光通信、传感和激光雷达等领域的快速发展, 深入研究海洋湍流对光束传输特性的影响具有重要的意义。采用数值模拟方法研究了慧差光束通过海洋湍流的传输特性。研究结果表明海洋湍流会导致光束慧形分布消失; 慧差光束的质心位置与最大光强位置不重合; 相比于以最大光强位置为中心、以光束质心位置为中心时计算得到的束宽要小, 但其受海洋湍流影响更大; 以能量Strehl比作为评价参数时, 慧差越严重, 则光束能量集中度受海洋湍流影响越小; 以β参数作为评价参数时, 当慧差系数取某特定值时, 光束能量集中度受海洋湍流的影响最大, 在实际应用中应该避免这种情况。能量Strehl比与β参数的物理含义不同, 分别表示按照给定桶半径内所含能量定义的能量集中度(能量Strehl比)与给定桶中功率百分比定义的能量集中度(β参数), 两者受海洋湍流的影响是不同的, 这在实际应用中应当特别注意。

Abstract

With the rapid development of underwater optical communication, sensing and ladar, it is important to deeply understand the effect of oceanic turbulence on beam characteristics. The characteristics of coma beam propagating through the oceanic turbulence are studied by numerical simulation. It is shown that the comet-like beam shape disappears due to the oceanic turbulence. The position of mass center dose not coincide with the position of the maximum light intensity. The beam width calculated on the condition that the position of mass center is regarded as the center is smaller than the result calculated on the condition that the position of maximum light intensity is regarded as the center, but it suffers more from the oceanic turbulence. It should be mentioned that, when the energy Strehl ratio is chosen as the characteristic parameter, the larger the coma aberration coefficient is, the less the influence of the oceanic turbulence on the beam energy concentration is. If we choose β parameter as the characteristic parameter, the energy concentration suffers most from the oceanic turbulence when certain value of the coma aberration coefficient is adopted, which should be avoided in practice. Moreover, the physical meaning of the energy Strehl ratio is different from that of the β parameter. The influence of oceanic turbulence on the energy concentration defined by the energy within a given bucket radius (i.e., energy Strehl ratio) is different from that defined by the certain power percentage (i.e., β parameter), which should be paid much attention in practice.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/cjl201744.0805003

基金项目:国家自然科学基金(61475105)

收稿日期:2017-02-20

修改稿日期:2017-04-24

网络出版日期:--

作者单位    点击查看

罗燏娟:四川师范大学物理与电子工程学院, 四川 成都 610068
季小玲:四川师范大学物理与电子工程学院, 四川 成都 610068

联系人作者:罗燏娟(18215552830@163.com)

备注:罗燏娟(1992-), 女, 硕士研究生, 主要从事激光传输特性方面的研究。

【1】Yang Yuqiang, Tan Liying, Ma Jing, et al. Influence of spherical aberration and coma on far-field behavior of signal beam in intersatellite optical communication[J]. Chinese J Lasers, 2008, 35(s1): 129-133.
杨玉强, 谭立英, 马 晶, 等. 星间光通信中球差和彗差对信号光远场特性的影响[J]. 中国激光, 2008, 35(s1): 129-133.

【2】Dabby F W, Whinnery J R. Thermal self-focusing of laser beams in lead glasses[J]. Applied Physics Letters, 1968, 13(8): 284-286.

【3】Alkelly A A. Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses[J]. Optics Communications, 2007, 277(2): 397-405.

【4】Ji X L, Deng J P. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence[J]. Physics Letters A, 2014, 378(36): 2729-2735.

【5】Deng J P, Ji X L. Influence of atmospheric turbulence on the energy focus ability of Gaussian beams with spherical aberration[J]. Journal of Optics, 2014, 16(5): 055705.

【6】Deng H L, Ji X L, Li X P, et al. Effect of spherical aberration on laser beam self-focusing in the atmosphere[J]. Optics Letters, 2015, 40(16): 3881-3884.

【7】Cai Y J, He S L. Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere[J]. Optics Letters, 2006, 31(5): 568-570.

【8】González-Galicia M A, Garduo-Mejía J, Rosete-Aguilar M, et al. Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment[J]. Journal of the Optical Society of America A, 2011, 28(10): 1990-1994.

【9】Mendoza-Yero O, Alda J. Irradiance map of an apertured Gaussian beam affected by coma[J]. Optics Communications, 2007, 271(2): 517-523.

【10】Chen Z Y, Pu J X. Effect of coma aberration on orbital angular momentum spectrum of vortex beams[J]. Chinese Physics Letters, 2009, 26(3): 034202.

【11】Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005.

【12】Gbur G, Wolf E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America A, 2002, 19(8): 1592-1598.

【13】Qian X M, Zhu W Y, Rao R Z. Numerical investigation on propagation effects of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence[J]. Optics Express, 2009, 17(5): 3782-3791.

【14】Tellez J A, Schmidt J D. Multibeam scintillation cumulative distribution function[J]. Optics Letters, 2011, 36(2): 286-288.

【15】Liu X H, Pu J X. Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence[J]. Optics Express, 2011, 19(27): 26444-26450.

【16】Gu Y L, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Optics Letters, 2013, 38(9): 1395-1397.

【17】Liu X L, Shen Y, Liu L, et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam[J]. Optics Letters, 2013, 38(24): 5323-5326.

【18】Wang F, Liu X L, Liu L, et al. Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence[J]. Applied Physics Letters, 2013, 103(9): 091102.

【19】Chen Zhen, Chu Xingchun, Zhao Shanghong, et al. Study of the drift characteristics of Airy vortex beams in atmospheric turbulence[J]. Chinese J Lasers, 2015, 42(12): 1213002.
陈 振, 楚兴春, 赵尚弘, 等. 艾里涡旋光束在大气湍流中的漂移特性研究[J]. 中国激光, 2015, 42(12): 1213002.

【20】Jia Rui, Wei Hongyan, Zhang Hongjian, et al. Scintillation index of echo wave in slant atmospheric turbulence[J]. Chinese J Lasers, 2015, 42(11): 1113001.
贾 锐, 韦宏艳, 张洪建, 等. 斜程大气湍流中点目标回波的闪烁研究[J]. 中国激光, 2015, 42(11): 1113001.

【21】Ke Xizheng, Wang Chaozhen. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 0101005.
柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布[J]. 光学学报, 2017, 37(1): 0101005.

【22】Bogucki D J, Domaradzki J A, Ecke R E, et al. Light scattering on oceanic turbulence[J]. Applied Optics, 2004, 43(30): 5662-5668.

【23】Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82-98.

【24】Tang M M, Zhao D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics B, 2013, 111(4): 665-670.

【25】Korotkova O, Farwell N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 2011, 284(7): 1740-1746.

【26】Hou W L, Woods S, Jarosz E, et al. Optical turbulence on underwater image degradation in natural environments[J]. Applied Optics, 2012, 51(14): 2678-2686.

【27】Wang Tingting, Wang Jiasi, Yuan Yangsheng, et al. Beam propagation of anomalous hollow beams in oceanic turbulence[J]. Acta Optica Sinica, 2015, 35(s2): s201002.
王婷婷, 王家驷, 袁扬胜, 等. 异常空心光束在海洋湍流中传输质量因子[J]. 光学学报, 2015, 35(s2): s201002.

【28】Lu L, Ji X L, Baykal Y. Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence[J]. Optics Express, 2014, 22(22): 27112-27122.

【29】Pu H, Ji X L. Oceanic turbulence effects on long-exposure and short-exposure imaging[J]. Journal of Optics, 2016, 18(10): 105704.

【30】Pu Huan, Ji Xiaoling. Problems of optical imaging in oceanic turbulence[J]. Acta Optica Sinica, 2016, 36(10): 1026014.
蒲 欢, 季小玲. 海洋湍流中光学成像相关问题研究[J]. 光学学报, 2016, 36(10): 1026014.

【31】Pu Huan, Ji Xiaoling, Yang Ting. Spatial coherence of partially coherent annular beams in oceanic turbulence[J]. Acta Optica Sinica, 2015, 35(s1): s101002.
蒲 欢, 季小玲, 杨 婷. 海洋湍流中部分相干环状光束的空间相干性[J]. 光学学报, 2015, 35(s1): s101002.

【32】Fleck J A, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics A: Materials Science & Processing, 1976, 10(2): 129-160.

【33】Yan H X, Li S S, Zhang D L, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 2000, 39(18): 3023-3031.

【34】Garay A. Continuous wave deuterium fluoride laser beam diagnostic system[C]. SPIE, 1988, 0888: 17-22.

【35】Ji X L, Zhang E T, Lü B D. Superimposed partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America B, 2008, 25(5): 825-833.

引用该论文

Luo Yujuan,Ji Xiaoling. Characteristics of Coma Beams Propagation through Oceanic Turbulence[J]. Chinese Journal of Lasers, 2017, 44(8): 0805003

罗燏娟,季小玲. 慧差光束通过海洋湍流的传输特性[J]. 中国激光, 2017, 44(8): 0805003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF