首页 > 论文 > 中国激光 > 44卷 > 8期(pp:806001--1)

基于逆传播神经网络的光纤布拉格光栅触觉传感

Tactile Sensing of Fiber Bragg Grating Based on Back Propagation Neural Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现机械手指的复合式触觉传感, 以光纤布拉格光栅(FBG)为传感元件, 将压力传感器和温度传感器封装在同一聚合物传感单元中。分析了压力传感器受目标物体温度扰动的特性, 同时利用逆传播神经网络对FBG触觉传感信号进行处理, 实现了对传感单元表面正向压力的准确识别。仿真与实验结果表明, 该方法进一步消除了目标物体温度对应变传感器的影响, 减小了应变传感器的不确定性误差, 提高了压力测量结果的稳定性和测量精度, 补偿后压力传感器的温度漂移率仅为1.2×10-4 nm/℃。将补偿研究应用于机械手指FBG触觉传感阵列, 可以有效抑制温度对应变传感的干扰, 使得柔性机械手指触滑测量系统具有更加广阔的应用前景。

Abstract

In order to realize the compound tactile sensing of mechanical finger, a pressure sensor and a temperature sensor are packaged in the same polymer sensing unit, and a fiber Bragg grating (FBG) is used as a sensing element. The characteristics of the pressure sensor disturbed by temperature of target object are analyzed. A back propagation neural network is used to process the tactile sensing signal of FBG, and thus the recognition of the positive pressure applied on the surface of sensing unit is achieved accurately. The simulation and experimental results show that this method eliminates the effect of the target object′s temperature on the strain sensor, and the uncertainty error of strain sensor is reduced. The compensation improves the stability of the pressure measurement and the measurement accuracy. The temperature drift rate of pressure sensor is 1.2×10-4 nm/℃ after compensation. The research can be applied to the FBG tactile sensing array installed on the mechanical finger. The temperature interference to the strain sensing can be suppressed, so that the tactile and sliding measurement system of flexible mechanical fingers have a broad application prospect.

投稿润色
补充资料

中图分类号:TN247

DOI:10.3788/cjl201744.0806001

所属栏目:光纤光学与光通信

收稿日期:2017-03-16

修改稿日期:2017-03-30

网络出版日期:--

作者单位    点击查看

钱牧云:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
余有龙:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009

联系人作者:钱牧云(nemo_my@163.com)

备注:钱牧云(1985-), 女, 博士研究生, 主要从事光纤光栅传感技术方面的研究。

【1】Zhao Dongbin, Zhang Wenzeng, Du Dong, et al. Abroad research status of PVDF tactile sensor for robot[J]. Piezoelectrics & Acoustooptics, 2001, 23(6): 428-432.
赵冬斌, 张文增, 都 东, 等. 机器人用PVDF触觉传感器的国外研究现状[J]. 压电与声光, 2001, 23(6): 428-432.

【2】Du Yangang, Pan Yingjun, Liu Jiamin. Research on three-axis tactile sensing head based on PVDF film[J]. Chinese Journal of Scientific Instrument, 2004, 25(s4): 215-218.
杜彦刚, 潘英俊, 刘嘉敏. 基于PVDF压电膜的三向力触觉传感头研究[J]. 仪器仪表学报, 2004, 25(s4): 215-218.

【3】Kim Y K, Kim K, Lee K R, et al. Technology development of silicon based CMOS tactile senor for robotics applications[C]. 5th IEEE Conference on Sensors, 2006: 9718383.

【4】Lu Xin, He Mingxuan, Li Yuan, et al. Design of capacitance detecting system based on capacitive sensing probe[J]. Transducer and Microsystem Technologies, 2011, 30(12): 95-97.
卢 歆, 何明轩, 李 源, 等. 基于电容式传感测头的电容检测系统的设计[J]. 传感器与微系统, 2011, 30(12): 95-97.

【5】Liu Xiujuan, Xu Xiangjian. A tactile sensor using optical waveguide[J]. Chinese Journal of Scientific Instrument, 2002, 23(s3): 127-129.
刘秀娟, 许湘剑. 一种采用光波导的触觉传感器[J]. 仪器仪表学报, 2002, 23(s3): 127-129.

【6】Wang Fujun, Liu Li. Research on tactile sensor using magnetic-sensitive Z-element[J]. Electrical Measurement & Instrument, 2000, 37(3): 37-38.
王福军, 刘 莉. 基于磁敏Z元件触觉传感器的研制[J]. 电测与仪表, 2000, 37(3): 37-38.

【7】Shimojo M, Namiki A, Ishikawa M, et al. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method[J]. IEEE Sensors Journal, 2004, 4(5): 589-596.

【8】Guo Xiaohui, Huang Ying, Teng Ke, et al. Modular design and implementation of flexible artificial skin with temperature and pressure sensors[J]. Robot, 2015, 37(4): 493-498.
郭小辉, 黄 英, 腾 珂, 等. 柔性温度压力仿生皮肤的模块化设计与实现[J]. 机器人, 2015, 37(4): 493-498.

【9】Heo J S, Kim J Y, Lee J J. Tactile sensors using the distributed optical fiber sensors[C]. 3rd International Conference on Sensing Technology, 2008: 10415799.

【10】Yu Youlong, Xue Hang, Wang Yanxiao, et al. Temperature distributed sensing technique for the local-area of the surface based on fiber Bragg gratings[J]. Acta Photonica Sinica, 2014, 43(5): 506001.
余有龙, 薛 航, 王彦晓, 等. 基于光纤光栅的物体表面附近温度场测量[J]. 光子学报, 2014, 43(5): 0506001.

【11】Sun Shihui, Yu Youlong, Li Hui, et al. Detection technique of stress waves based on fiber Bragg grating[J]. Chinese J Lasers, 2016, 43(5): 0505002.
孙诗惠, 余有龙, 李 慧, 等. 基于光纤光栅的应力波检测技术研究[J]. 中国激光, 2016, 43(5): 0505002.

【12】Si Duanfeng, Chang Bingguo, Liu Junhua. The research on the new compensation method of sensor′s performance based on BP artificial neural networks[J]. Instrument Technique and Sensor, 2000(1): 11-13.
司端锋, 常炳国, 刘君华. 基于BP神经网络的传感器特性补偿新算法的研究[J]. 仪表技术与传感器, 2000(1): 11-13.

【13】Shao Jun, Liu Junhua, Qiao Xueguang, et al. Study on increasing selectivity of fiber Bragg grating pressure sensor with BP neural network[J]. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1531-1534.
邵 军, 刘君华, 乔学光, 等. 利用BP神经网络提高光纤光栅压力传感器的选择性[J]. 传感技术学报, 2007, 20(7): 1531-1534.

【14】Zhu Daqi, Yu Shenglin. Data fusion algorithm based on D-S evidential theory and its application for circuit fault diagnosis[J]. Acta Electronica Sinica, 2002, 30(2): 221-223.
朱大奇, 于盛林. 基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用[J]. 电子学报, 2002, 30(2): 221-223.

【15】Mu Chundi, Ye Jun. Bayesian network for data mining[J]. Journal of Software, 2000, 11(5): 660-666.
慕春棣, 叶 俊. 用于数据挖掘的贝叶斯网络[J]. 软件学报, 2000, 11(5): 660-666.

【16】Wu Junjie, Hou Hongjuan, Yang Yongping. Application of neural network algorithm in steam turbine′s exhaust enthalpy estimation[J]. Thermal Power Generation, 2014, 43(8): 125-130.
吴俊杰, 侯宏娟, 杨勇平. 神经网络算法在汽轮机排汽焓估算中的应用[J]. 热力发电, 2014, 43(8): 125-130.

引用该论文

Qian Muyun,Yu Youlong. Tactile Sensing of Fiber Bragg Grating Based on Back Propagation Neural Network[J]. Chinese Journal of Lasers, 2017, 44(8): 0806001

钱牧云,余有龙. 基于逆传播神经网络的光纤布拉格光栅触觉传感[J]. 中国激光, 2017, 44(8): 0806001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF