首页 > 论文 > 中国激光 > 44卷 > 8期(pp:803003--1)


Preparation of Gold Nanoparticles by Femtosecond Laser Ablation in Chloroauric Acid Trihydrate Aqueous Solution

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


利用波长为800 nm、脉宽为30 fs的脉冲激光聚焦后烧蚀氯金酸(HAuCl4·3H2O)水溶液制备了金纳米粒子, 借助紫外-可见吸收光谱、透射电镜形貌、X射线衍射谱和选区电子衍射谱分析了氯金酸水溶液浓度、激光脉冲能量和分散剂聚乙烯吡咯烷酮(PVP)添加量等对金纳米粒子粒径及其分布的影响。实验结果表明:金纳米粒子的表面等离子体共振吸收峰约在530 nm波长处; 在其他条件不变的条件下, 较低的溶液浓度、较高的激光能量和较高的PVP添加量有利于获得粒径较小、粒径变化范围较窄且分散性较高的金纳米粒子; 制备的金纳米粒子绝大多数为球形, 并具有多晶结构, 金纳米晶体的(111)、(200)、(220)和(311)晶面都有较强的X射线衍射峰; 金纳米粒子的生长过程分为团聚和吸附两个阶段。


Gold nanoparticles are prepared in chloroauric acid trihydrate (HAuCl4·3H2O) aqueous solution by the ablation with a focused femtosecond pulse laser beam of 800 nm wavelength and 30 fs pulse duration. The effects of HAuCl4·3H2O aqueous solution concentration, laser pulse energy and dispersant polyvinyl pyrrolidone (PVP) amount on particle size and size distribution of gold nanoparticles are investigated by means of UV-Vis absorption spectrum, transmission electron microscopic morphology, X-ray diffraction spectrum, and selected area electron diffraction pattern. The results show that the surface plasma resonance absorption peak of the gold nanoparticles locates around 530 nm. Lower solution concentration, higher laser pulse energy and higher PVP amount are helpful to obtain nanoparticles with smaller average particle size, narrower particle size range and higher dispersion when other experimental parameters are fixed at certain values. The prepared particles are mostly spherical and display multi-nanocrystal surface structure. The strong X-ray diffraction peaks of (111), (200), (220) and (311) crystal planes of gold nanocrystal are observed. The growth process of gold nanoparticle includes aggregation stage and adsorption stage.









作者单位    点击查看

杜传梅:安徽理工大学土木建筑学院, 安徽 淮南 232001
吕良宏:安徽师范大学原子与分子物理研究所, 安徽 芜湖 241000
张明旭:安徽理工大学材料科学与工程学院, 安徽 淮南 232001


备注:杜传梅(1971-), 女, 博士, 副教授, 主要从事环境工程方面的研究。

【1】Jain P K, Huang X H, El-Sayed I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41: 1578-1586.

【2】Wang A, Sun W, Wang C, et al. Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application[J]. Dyes and Pigments, 2017, 141: 13-20.

【3】de Mrinmoy B, Ghosh P S, Rotello V M. Applications of nanoparticles in biology[J]. Advanced Materials, 2008, 20(22): 4225-4241.

【4】Jin Jing, Zhu Shoujun, Song Yubin, et al. Facile synthesis of Ag/CDs composite using CDs as reductant for SERS[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 291-292.
金 静, 朱守俊, 宋玉彬, 等. 银/碳点复合纳米粒子的构筑及其SERS研究[J]. 光谱学与光谱分析, 2016, 36(10): 291-292.

【5】Zoladek S, Rutkowska I A, Blicharska M. Evaluation of reduced-graphene-oxide-supported gold nanoparticles as catalytic system for electroreduction of oxygen in alkaline electrolyte[J]. Electrochimica Acta, 2017, 233: 113-122.

【6】Okada T, Suehiro J. Synthesis of nano-structured materials by laser-ablation and their application to sensors[J]. Applied Surface Science, 2007, 253(19): 7840-7847.

【7】Khodaveisi J, Shabani A M, Dadfarnia S, et al. A novel sensor for determination of naproxen based on change in localized surface plasmon peak of functionalized gold nanoparticles[J]. Spectrochimica Acta Part A, 2017, 179: 11-16.

【8】Kneipp J, Li X T, Sherwood M, et al. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing[J]. Analytical Chemistry, 2008, 80(11): 4247-4251.

【9】Li Ming, Li Kaiwei, Dai Fang, et al. Highly sensitive optical nanofiber sensor based on gold nanorod amplification[J]. Acta Optica Sinica, 2015, 35(12): 1206001.
李 明, 李凯伟, 代 方, 等. 基于金纳米棒放大的高灵敏度纳米光纤生化传感器[J]. 光学学报, 2015, 35(12): 1206001.

【10】Nirmala J G, Akila S, Narendhirakannan R T, et al. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines[J]. Advanced Powder Technology, 2017, 28(4): 1170-1184.

【11】Wang X Y, Zou M J, Xu X, et al. Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2009, 395(7): 2397-2403.

【12】Guevel X L. Recent advances on the synthesis of metal quantum nanoclusters and their application for bioimaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(3): 6801312.

【13】Jiang Y Q, Horimoto N N, Imura K, et al. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold[J]. Advanced Materials, 2009, 21(22): 2309-2313.

【14】Wang M H, Hu J W, Li Y J, et al. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects[J]. Nanotechnology, 2010, 21(14): 145608.

【15】Zhang Jie, Chen Yulin, Zhu Yong. Raman spectrum of carbon nanotubes coated by Au nano particles film[J]. Chinese J Lasers, 2012, 39(11): 1115001.
张 洁, 陈俞霖, 朱 永. 碳纳米管和金属纳米粒子复合结构的拉曼光谱特性研究[J]. 中国激光, 2012, 39(11): 1115001.

【16】Hvolbk B, Janssens T V W, Clausen B S, et al. Catalytic activity of Au nanoparticles[J]. Nanotoday, 2007, 2(4): 14-18.

【17】Xu X H N, Huang S, Brownlow W, et al. Size and temperature dependence of surface plasmon absorption of gold nanoparticles induced by tris(2,2′-bipyridine) ruthenium(II)[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15543-15551.

【18】Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.

【19】Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. The Journal of Physical Chemistry B, 1999, 103(21): 4212-4217.

【20】Raschke G, Kowarik S, Franzl T, et al. Biomolecular recognition based on single gold nanoparticle light scattering[J]. Nano Letters, 2003, 3(7): 935-938.

【21】Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles[J]. Chemistry of Materials, 2001, 13(7): 2313-2322.

【22】Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. Journal of the American Chemical Society, 2004, 126(28): 8648-8649.

【23】Zhou Shuqing, Ma Guojia,Wang Chunhua, et al. Rule of morphology variation of Ti alloy surface induced by femtosecond lasers[J]. Chinese J Lasers, 2016, 43(9): 0902003.
周树清, 马国佳, 王春华, 等. 飞秒激光诱导钛合金表面形貌变化的规律[J]. 中国激光, 2016, 43(9): 0902003.

【24】Du Lingyan, Wu Zhiming, Hu Zheng, et al. Progress in fabrication and application of doping black silicon by femtosecond laser[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100005.
杜玲艳, 吴志明, 胡 征, 等. 飞秒激光制备掺杂黑硅及其应用进展[J]. 激光与光电子学进展, 2015, 52(10): 100005.

【25】Sylvestre J P, Poulin S, Kabashin A V, et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media[J]. The Journal of Physical Chemistry B, 2004, 108(43): 16864-16869.

【26】Mafune F, Kohno J, Takeda Y, et al. Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control[J]. The Journal of Physical Chemistry B, 2002, 106(31): 7575-7577.

【27】Haider A F M Y, Sengupta S, Abedin K M, et al. Fabrication of gold nanoparticles in water by laser ablation technique and their characterization[J]. Applied Physics A, 2011,105(2):487-495.

【28】Kabashin A V, Meunier M. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water[J]. Journal of Applied Physics, 2003, 94(12): 7941-7943.

【29】Sylvestre J P, Kabashin A V, Sacher E, et al. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution[J]. Applied Physics A, 2005, 80(4): 753-758.

【30】Takami A, Kurita H, Koda S. Laser-induced size reduction of noble metal particles[J]. The Journal of Physical Chemistry B, 1999, 103(8): 1226-1232.

【31】Nakamura T, Mochidzuki Y, Takasaki K, et al. Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution[J]. Journal of Materials Research, 2008, 23(4): 968-974.

【32】Mafune F, Kohno J Y, Takeda Y, et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant[J]. The Journal of Physical Chemistry B, 2001, 105(22): 5114-5120.

【33】Sobhan M A, Withford M J, Goldys E M. Enhanced stability of gold colloids produced by femtosecond laser synthesis in aqueous solution of CTAB[J]. Langmuir, 2012, 26(5): 3156-3159.

【34】Sylvestre J P, Kabashin A V, Sacher E, et al. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins[J]. Journal of the American Chemical Society, 2004, 126(23): 7176-7177.


Du Chuanmei,Lü Lianghong,Zhang Mingxu. Preparation of Gold Nanoparticles by Femtosecond Laser Ablation in Chloroauric Acid Trihydrate Aqueous Solution[J]. Chinese Journal of Lasers, 2017, 44(8): 0803003

杜传梅,吕良宏,张明旭. 飞秒激光烧蚀氯金酸水溶液制备金纳米粒子[J]. 中国激光, 2017, 44(8): 0803003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF