首页 > 论文 > 量子电子学报 > 34卷 > 4期(pp:446-450)

基于修正相干态光源的MDI-QKD 全局估计性能分析

Performance analysis of MDI-QKD global estimation based on modified coherent source

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高测量设备无关量子密钥分发(MDI-QKD)系统的整体性能,利用修正相干态光 源(MCS)可以优化光子数分布率的性质,设计了一种基于MCS的MDI-QKD系统。基于全局估计的 计算方法推导了密钥生成率与传输距离的关系,保证了在密性放大计算过程中单光子信息的充 分利用,得到较为精确的密钥率下限值。通过仿真分析将所提出的系统与基于预报单光子源(HSPS)的 MDI-QKD系统性能进行对比,结果表明MCS光源比HSPS光源的传输距离提高了9%,有效改善了系统性能。

Abstract

In order to improve the overall performance of measurement-device-independent quantum key distribution (MDI-QKD), the properties of photon number distribution can be optimized by using the modified coherent source (MCS), and a MDI-QKD system is designed based on MCS. The relationship between key generation rate and transmission distance is derived based on calculation method of global estimation. The full use of single photon information during privacy amplification calculation stage is ensured, and the more accurate lower limit value of key rate is obtained. The performances of proposed system and MDI-QKD system based on heralded single photon source (HSPS) are compared by simulation analysis. Results show that the transmission distance of MCS light source is increased by 9% than that of HSPS light source, and the system performance is improved effectively.

投稿润色
补充资料

中图分类号:TN918

DOI:10.3969/j.issn.1007-5461. 2017.04.011

所属栏目:量子光学

基金项目:Supported by National Natural Science Foundation of China (国家自然科学基金, 61168068)

收稿日期:2016-07-28

修改稿日期:2016-10-11

网络出版日期:--

作者单位    点击查看

薛 阳:空军工程大学信息与导航学院, 陕西 西安 710077
马丽华:空军工程大学信息与导航学院, 陕西 西安 710077
石 磊:空军工程大学信息与导航学院, 陕西 西安 710077
魏家华:空军工程大学信息与导航学院, 陕西 西安 710077
罗均文:空军工程大学信息与导航学院, 陕西 西安 710077

联系人作者:薛阳(relnix@sina.cn)

备注:薛 阳 (1993-), 陕西人,研究生,研究方向为量子密钥分发。

【1】Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing , 1984: 175-179.

【2】Mizutani A, Curty M, Lim C C W, et al . Finite-key security analysis of quantum key distribution with imperfect light sources[J]. New Journal of Physics , 2015, 17(9): 093011.

【3】Yuen H P. Security of quantum key distribution[J]. IEEE Access , 2016, 4: 724-749.

【4】Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Appl. Phys. Lett. , 2012, 101: 071107.

【5】Korzh B, Lim C C W, Houlmann R, et al . Provably secure and practical quantum key distribution over 307 km of optical fibre[J]. Nature Photonics , 2015, 9(3): 163-168.

【6】Comandar L C, Lucamarini M, Frhlich B, et al . Quantum key distribution without detector vulnerabilities using optically seeded lasers[J]. Nature Photonics , 2016, 10: 312-315.

【7】Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New J. Modern Opt. , 2009, 11: 065003.

【8】Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. , 2012, 108: 130503.

【9】Du Y N. Analysis on quantum bit error rate in measurement device independent quantum key distribution using weak coherent states[J]. Acta Phys. Sin. (物理学报), 2015, 64: 110301 (in Chinese).

【10】Ma X, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Phys. Rev. A , 2012, 86: 062319.

【11】Tang Y L, Yin H L, Chen S J, et al . Field test of measurement-device-independent quantum key distribution[C]. IEEE J. Select. Topics Quantum Electron , 2015, 21: 6600407.

【12】Zhou C, Bao W S, Chen W, et al . Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources[J]. Phys. Rev. A , 2013, 88: 052333.

【13】Wang Y, Bao W S, Li H W, et al . Security of a practical semi-device-independent quantum key distribution protocol against collective attacks[J]. Chin. Phys. B , 2014, 23: 080303.

【14】Zhou Y Y. A measurement-device-independent quantum key distribution protocol with a heralded single photon source[J]. Optoeletronics Letters , 2016, 12(2): 148-151.

【15】Wang Q, Wang X B. An efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon source[J]. Phys. Rev. A , 2013, 88: 052332.

【16】Li M, Zhang C M, Yin Z Q, et al . Measurement-device-independent quantum key distribution with modified coherent state[J]. Opt. Lett. , 2014, 39: 880.

【17】Li M, Zhang C M, Yin Z Q, et al . Measurement-device-independent QKD with modified coherent state[J]. arXiv preprint: 2014, 1402.2502.

【18】Liu D, Pei C X, Quan D X, et al . New decoy state quantum key distribution for increasing the security communication distance[J]. Journal of Xidian University (西安电子科技大学学报), 2010, 37(1): 13-17 (in Chinese).

【19】Ma X F, Qi B, Zh Y, et al . Practical decoy state for quantum key distribution[J]. Phys. Rev. A , 2005, 72: 012326.

【20】Sun S H, Gao M, et al . Practical decoy state measurement-device-independent quantum key distribution[J]. Phys. Rev. A , 2013, 87: 052329.

【21】Jiang H D, Gao M. A global estimation of the lower bound of the privacy amplification term for decoy-state quantum key distribution[OL]. arXiv, 2015 1502.04427.

引用该论文

XUE Yang,MA Lihua,SHI Lei,WEI Jiahua,LUO Junwen. Performance analysis of MDI-QKD global estimation based on modified coherent source[J]. Chinese Journal of Quantum Electronics, 2017, 34(4): 446-450

薛 阳,马丽华,石 磊,魏家华,罗均文. 基于修正相干态光源的MDI-QKD 全局估计性能分析[J]. 量子电子学报, 2017, 34(4): 446-450

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF