首页 > 论文 > 量子电子学报 > 34卷 > 4期(pp:507-512)

混合表面等离子体光子晶体波导

Hybrid surface plasmon photonic crystal waveguide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种新型金属-绝缘体-半导体(MIS)混合表面等离子体结构,基于时域有限差 分法验证了该结构在归一化频率范围(0.243~0.271)a/λ内具有明显的TM模式带隙。在二维光子晶体层 移除或改变中间行空气孔半径构成线缺陷,形成混合波导结构1和2。分析表明入射光频率位于 带隙内的光子能量被很好地局域在低折射率层中,且只能沿线缺陷传输。当入射波长为1550 nm时,两 种波导的传输距离分别为18.41 μm、15.70 μm, 群速度极值分别为0.186c、0.166c, 品质因数达 到384.74、1042.50。此波导能通过光子晶体层的线缺陷控制低折射率层表面等离子体(SPP)激光的传输路径,为波导 器件的研究提供了有效的理论依据。

Abstract

A new type of metal-insulator-semiconductor (MIS) hybrid surface plasmonstructure is proposed. It is verified that the structure has obvious TM mode band gap in the normalized frequency range of (0.243~0.271)a/λ. Line defect is formed by removing and changing the radius of air holes in the two-dimensional photonic crystal layer, and hybrid waveguide structure 1 and 2 are constituted. Analysis shows that the photon energy whose frequency is located in the bandgap is well confined in the low index layer and can only be transmitted along the line defect. When the incident wavelength is 1550 nm, the transmission distances of two waveguides are 18.41 μm, 15.70 μm, the group velocity extreme values are 0.186c, 0.166c, the quality factors are 384.74, 1042.50, respectively. The waveguide can control the transmission path of low refractive index layer surface plasmon polariton (SPP) through the line defect of photonic crystal layer. It provides an effective theoretical basis for the research of waveguide devices.

投稿润色
补充资料

中图分类号:O439

DOI:10.3969/j.issn.1007-5461. 2017.04.021

所属栏目:纤维与波导光学

基金项目:Supported by National Natural Science Foundation of China (国家自然科学基金, 61172044)

收稿日期:2016-05-16

修改稿日期:2016-12-16

网络出版日期:--

作者单位    点击查看

汪梅婷:燕山大学里仁学院, 河北 秦皇岛 066004
周春亮:燕山大学电气工程学院, 河北 秦皇岛 066004
郭 佳:燕山大学电气工程学院, 河北 秦皇岛 066004
王美玉:燕山大学电气工程学院, 河北 秦皇岛 066004
童 凯:燕山大学电气工程学院, 河北 秦皇岛 066004

联系人作者:汪梅婷(tongkai@ysu.edu.cn)

备注:汪梅婷 (1976-), 河北人,女,硕士,讲师,主要从事光学信息处理方面的研究。

【1】Wang Meiting, Wu Xiaogang, Tong Kai. Photo elastic properties of two-dimensional photonic crystal band structure[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2011, 28(4): 457-460 (in Chinese).

【2】Wu Fengqin, Han Dezhuan, Hu Xinhua, et al . Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting[J]. J. Phys.: Condens. Matter , 2009, 21(18): 185010.

【3】Jin Gui, Huang Xiaoyi, Huang Jianquan. Dispersion and transmission property of resonator side coupling MDM waveguide based on surface plasmon polaritons[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(6): 648-653 (in Chinese).

【4】Zhao Huajun, Yuan Dairong. Propagation characteristics of metal-dielectric-metal surface plasmon polariton waveguide for high-order modes[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(2): 252-25(in Chinese).

【5】Liao Tongqing, Wang Zhongzhu, Xie Yanyu. Analysis of symmetry thin-film waveguide stacked symmetrically by photonic crystals multilayer films[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2010, 27(5): 626-631 (in Chinese).

【6】Lu Qijing, Zou Changling, Chen Daru, et al . Extreme light confinement and low loss in triangle hybrid plasmonic waveguide[J]. Optics Communications , 2014, 319: 141-146.

【7】Lu Hongbo, Liu Yumin, Yu Zhongyuan, et al . Hybrid plasmonic waveguides for low-threshold nanolaser applications[J]. Chinese Journal of Lasers (中国激光), 2014, 12(11): 112401 (in Chinese).

【8】Oulton R F, Sorger V J, Genov D A, et al . A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics , 2008, 2(8): 496-500.

【9】Bian Yusheng, Zheng Zheng, Zhao Xin, et al . Gain enhancement in a V-shaped plasmonic slot waveguide for efficient loss compensation at the subwavelength scale[J]. Optics Communications , 2013, 294: 414-419.

【10】Wei Wei, Zhang Xia, Yu Hui, et al . Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate[J]. Photonics and Nanostructures-Fundamentals and Applications , 2013, 11(3): 279-287.

【11】Yang Xiaodong, lshikawa A, Yin Xiaobo, et al . Hybrid photonic plasmonic crystal nano cavities[J]. ACS Nano , 2011, 5(4): 2831-2838.

【12】Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic Bragg reflector[J]. Opt. Expr. , 2006, 14(23): 11318-11323.

【13】Gao Jingjie, Sun Xiaohong. Investigation of band gap characteristics of the ten-foid photonic quasi crystal[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(2): 207-212 (in Chinese).

【14】Lin Rong. Photonic lattice induced by non-diffracting discrete beam[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(4): 478-485 (in Chinese).

【15】Feng Chen, Feng Guoying, Zhou Hao, et al . Characteristic analysis on photonic crystal laser cavity with one-dimensional photonic bandgap[J]. Chinese Journal of Lasers (中国激光), 2012, 39(8): 0802009 (in Chinese).

【16】Liu Kaixian. Gain-assist lossless hybrid plasmonic waveguides based on active semiconductor material[J]. Journal of Optoelectronics · Laser (光电子·激光), 2015, 2(1): 199-204 (in Chinese).

【17】Wan Yong, Fu Kai, Yun Maojin, et al . Slow light effect with low group velocity and low dispersion by adjusting parameters of cylinder-segment scatterers[J]. Chinese Journal of Lasers (中国激光), 2013, 40(1): 0106002 (in Chinese).

【18】Buckley R, Berini P. Figures of merit for 2D surface plasmon waveguides and application tometal stripes[J]. Opt. Expr. , 2007, 15(19): 12174-12182.

【19】Chen L, et al . Novel hybrid plasmonic waveguide consisting of twoidentical dielectric nanowires symmetrically placed on each side of a thin metal film[J]. Opt. Expr. , 2012, 20(18): 20535-20544.

引用该论文

WANG Meiting,ZHOU Chunliang,GUO Jia,WANG Meiyu,TONG Kai. Hybrid surface plasmon photonic crystal waveguide[J]. Chinese Journal of Quantum Electronics, 2017, 34(4): 507-512

汪梅婷,周春亮,郭 佳,王美玉,童 凯. 混合表面等离子体光子晶体波导[J]. 量子电子学报, 2017, 34(4): 507-512

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF