首页 > 论文 > 中国激光 > 44卷 > 9期(pp:901004--1)

425 mJ高光束质量特殊取向Nd∶YAG激光放大器

425 mJ High Beam Quality Specific Orientation Nd∶YAG Laser Amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于主振荡功率放大结构, 采用特殊取向Nd∶YAG激光放大器, 获得高脉冲能量、高光束质量的激光输出。激光放大结构包含种子源、预放大级和主放大级三部分。在主放大级中, 采用串联放置的激光二极管侧面抽运Nd∶YAG棒状放大模块对种子光进行放大。为了获得高光束质量的输出光束, 对不同切割方向Nd∶YAG晶体棒的热退偏损耗进行了模拟。根据模拟结果, 放大模块选择[100]切割方向的Nd∶YAG晶体棒作为增益介质。在重复频率为200 Hz、脉宽为25 ns、脉冲能量为40 μJ、光束质量接近衍射极限的种子光注入条件下, 获得了425 mJ脉冲能量输出, 输出光光束质量因子为1.37, 功率稳定度为0.81%。

Abstract

Based on master-oscillator power amplifier structure, an laser output with high pulse energy and high beam quality is achieved using a specific orientation Nd∶YAG laser amplifier. The laser amplifier includes three parts, a seed laser source, a pre-amplifier stage and a main-amplifier stage. In the main-amplifier stage, a laser diode side-pump Nd∶YAG rod amplifiers is used for the amplification of the seed laser. In order to obtain a high beam quality output, the thermal depolarization losses for different cut Nd∶YAG rods are simulated. According to the simulation results, the [100]-cut Nd∶YAG rods are chosen as the active materials in the main-amplifier stage. Under the condition of repetition frequency of 200 Hz, pulse width of 25 ns, pulse energy of 40 μJ and a near diffraction limit seed laser injected, an output of 425 mJ pulse energy is gained with a beam quality factor of 1.37, and the output power stability of 0.81%.

投稿润色
补充资料

中图分类号:TN2

DOI:10.3788/cjl201744.0901004

所属栏目:激光物理

基金项目:国家重大科研装备研制项目(ZDYZ2013-2)

收稿日期:2017-04-06

修改稿日期:2017-05-06

网络出版日期:--

作者单位    点击查看

邹岩:北京工业大学激光工程研究院, 北京 100124
姜梦华:北京工业大学激光工程研究院, 北京 100124
惠勇凌:北京工业大学激光工程研究院, 北京 100124
雷訇:北京工业大学激光工程研究院, 北京 100124
李强:北京工业大学激光工程研究院, 北京 100124

联系人作者:邹岩(zouyanofcn@163.com)

备注:邹岩(1984-), 男, 博士研究生, 主要从事能量光电子技术与系统方面的研究。

【1】Yang H, Meng J, Ma X, et al. Compact and high-energy diode-side-pumped Q-switched Nd∶YAG slab laser system for space application[J]. Chinese Optics Letters, 2014, 12(12): 121406.

【2】Zohuri B. Directed energy weapons: physics of high energy lasers (HEL)[M]. Switzerland: Springer International Publishing, 2016: 47-77.

【3】Zhang Z P, Yang F M, Zhang H F, et al. The use of laser ranging to measure space debris[J]. Research in Astronomy and Astrophysics, 2012, 12(2): 212.

【4】Serrano J, Moros J, Laserna J J. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas[J]. Analytical Chemistry, 2015, 87(5): 2794-2801.

【5】Qi Y, Zhao Z, Liu C, et al. Beam quality management in multi-stage side-pumped Nd∶YAG MOPA laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 220-225.

【6】Yang X, Bo Y, Peng Q, et al. High-beam-quality, 5.1 J, 108 Hz diode-pumped Nd∶YAG rod oscillator-amplifier laser system[J]. Optics Communications, 2006, 266(1): 39-43.

【7】Hirano Y, Pavel N, Yamamoto S, et al. 100 W class diode-pumped Nd∶YAG MOPA system with a double-stage relay-optics scheme[J]. Optics Communications, 1999, 170(4): 275-280.

【8】Riesbeck T. Generation of tailored pulse trains for efficient material processing by a high power MOPA system with birefringence compensation[J]. Laser Physics Letters, 2008, 5(3): 240-245.

【9】Eichler H J, Haase A, Menzel R, et al. Depolarization treatment and optimization of high power double pass neodyn-rod amplifiers with SBS mirror[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 1994, 3(4): 585.

【10】Tsubakimoto K, Yoshida H, Miyanaga N. High-average-power green laser using Nd∶YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror[J]. Optics Express, 2016, 24(12): 12557-12564.

【11】Qiu J, Tang X, Fan Z, et al. 200 Hz repetition frequency joule-level high beam quality Nd∶YAG nanosecond laser[J]. Optics Communications, 2016, 368: 68-72.

【12】Moshe I, Jackel S. Correction of thermally induced birefringence in double-rod laser resonators-comparison of various methods[J]. Optics Communications, 2002, 214(1): 315-325.

【13】Hasi W L J, Guo X Y, Li X, et al. A new method to improve the loading capacity of stimulated Brillouin scattering phase-conjugating mirror[J]. Applied Physics B, 2010, 100(3): 577-580.

【14】Guo Shaofeng, Lin Wenxiong, Lu Qisheng, et al. Experimental research on stimulated Brillouin scattering in fused silica glass[J]. Acta Physica Sinica, 2007, 56(4): 2218-2222.
郭少锋, 林文雄, 陆启生, 等. 熔融石英玻璃受激布里渊散射效应实验研究[J]. 物理学报, 2007, 56(4): 2218-2222.

【15】Wang Sha, Tong Lixin, Gao Qingsong, et al. LD pumped laser MOPA system with a phase conjugating mirror of a fused silicon rod[J]. High Power Laser and Particle Beams, 2007, 19(8): 1233-1236.
汪 莎, 童立新, 高清松, 等. 应用熔石英棒相位共轭镜的LD抽运激光MOPA系统[J]. 强激光与粒子束, 2007, 19(8): 1233-1236.

【16】Shoji I, Taira T. Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal[J]. Applied Physics Letters, 2002, 80(17): 3048-3050.

【17】Koechner W. Solid-state laser engineering[M]. Berlin: Springer, 2003.

【18】Puncken O, Tünnermann H, Morehead J J, et al. Intrinsic reduction of the depolarization in Nd∶YAG crystals[J]. Optics Express, 2010, 18(19): 20461-20474.

【19】Sun Z, Li Q, Jiang M, et al. Improvement of the linearly polarized output power in Nd∶YAG laser with [100]-cut rod[J]. Chinese Optics Letters, 2012, 10(s1): sl1402.

【20】Ostermeyer M, Klemz G, Kubina P, et al. Quasi-continuous-wave birefringence-compensated single- and double-rod Nd∶YAG lasers[J]. Applied Optics, 2012, 41(36): 7573-7582.

引用该论文

Zou Yan,Jiang Menghua,Hui Yongling,Lei Hong,Li Qiang. 425 mJ High Beam Quality Specific Orientation Nd∶YAG Laser Amplifier[J]. Chinese Journal of Lasers, 2017, 44(9): 0901004

邹岩,姜梦华,惠勇凌,雷訇,李强. 425 mJ高光束质量特殊取向Nd∶YAG激光放大器[J]. 中国激光, 2017, 44(9): 0901004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF