首页 > 论文 > 光学学报 > 37卷 > 9期(pp:928001--1)

含水体的合成孔径雷达图像配准

Image Registration of Synthetic Aperture Radar Including Body of Water

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

水体是合成孔径雷达(SAR)图像解译的一类重要内容。针对含水体的SAR图像的成像特点, 给出了一种基于轮廓的配准方法。首先, 提出了融合观测图像局部统计信息的自适应权马尔科夫随机场 (MRF)分割模型, 以分割SAR图像水体目标并提取其精确轮廓。然后, 提出了轮廓匹配的非均匀高斯混合模型(GMM), 该模型能融合轮廓上点的位置信息和以轮廓点为中心的窗口的灰度相似性信息。最后, 对含水体目标的SAR图像进行配准实验。结果显示所提出的MRF分割模型能精确地定位目标边缘并保持图像的细节, 轮廓匹配的非均匀GMM对噪声、外点及局部变形具有稳健性, 能较好地实现含水体目标的SAR图像配准。

Abstract

Body of water is a kind of important content of synthetic aperture radar (SAR) image interpretation. In this paper, a registration method, which is based on the contours and aiming at the imaging features of SAR image including body of water, is proposed. At first, an adaptive weighting Markov random field (MRF) segmentation model which is integrating local statistical information of observed image is proposed to segment the target of water body of SAR image and accurately extract its contour. Then, a non-uniform Gaussian mixture model (GMM) of contour matching is proposed. The mixture model can integrate both the location information of point of contours and the gray scale similarity information of windows including the contour points as the centers. At last, the registration experiments of SAR image including body of water are conducted. Results show that the proposed MRF segmentation model can accurately locate the edge of object and reserve the details of image. The non-uniform GMM for contours matching is robust to noise, outliers and local deformation, which can achieve the registration of SAR image including body of water better.

投稿润色
补充资料

中图分类号:TP391

DOI:10.3788/aos201737.0928001

所属栏目:遥感与传感器

基金项目:国家自然科学基金青年科学基金(11501436)、 陕西省教育厅专项科研计划项目(16JK1326)、西安工程大学博士科研启动基金(BS1420)

收稿日期:2017-03-10

修改稿日期:2017-05-02

网络出版日期:--

作者单位    点击查看

贺飞跃:西安工程大学理学院, 陕西 西安 710048
赵 伟:中国工程物理研究院材料研究所, 四川 绵阳 621900

联系人作者:贺飞跃(feiyue126@126.com)

备注:贺飞跃(1974-), 男, 博士, 讲师, 主要从事图像处理及计算机视觉方面的研究。

【1】Ma Su, Deng Kazhong, Zhuang Huifu, et al. Otsu change detection of low and moderate resolution synthetic aperture radar image by using multi-texture features[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062804.
马 骕, 邓喀中, 庄会富, 等. 中低分辨率SAR纹理多特征的Otsu变化检测[J]. 激光与光电子学进展, 2017, 54(6): 062804.

【2】Kang Le, Zhang Qun, Li Taoyong, et al. Imaging method of downward-looking three dimensional synthetic aperture radar based on Bayesian learning[J]. Acta Optica Sinica, 2017, 37(6): 0611003.
康 乐, 张 群, 李涛泳, 等. 基于贝叶斯学习的下视三维合成孔径雷达成像方法[J]. 光学学报, 2017, 37(6): 0611003.

【3】Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Computer Vision, 2004, 60(2): 91-110.

【4】Wang Z, Wu F, Hu Z. MSLD: a robust descriptor for line matching[J]. Pattern Recognition, 2009, 42(5): 941-953.

【5】Zhou Haiyang, Zhu Xinyan, Yu Feihong. Improved efficient triangle similarity algorithm for deep-sky image registration[J]. Acta Optica Sinica, 2017, 37(4): 0410003.
周海洋, 朱鑫炎, 余飞鸿. 改进型高效三角形相似法及其在深空图像配准中的应用[J]. 光学学报, 2017, 37(4): 0410003.

【6】Margerida S, Sandra H. Separation between water and land in SAR images using region-based level sets[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 471-475.

【7】Li S Z. Markov random field modeling in image analysis[M]. New York: Springer-Verlag, 2009.

【8】Anthony P D. An automatic U-distribution and Markov random field segmentation algorithm for PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (4): 1819-1827.

【9】Huawu D, Clausi D A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(3): 528-538.

【10】He Feiyue, Tian Zheng, Fu Huijing, et al. Efficient segmentation of SAR images using Markov random field models with edge penalties and an adaptive weighting parameter[J]. Acta Optica Sinica, 2013, 33(8): 0811004.
贺飞跃, 田 铮, 付辉敬, 等. 带边缘惩罚和自适应权马尔科夫随机场的合成孔径雷达图像快速分割[J]. 光学学报, 2013, 33(8): 0811004.

【11】Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381.

【12】Mohammad A, Li G J. An improved curvature scale-space corner detector and a robust corner matching approach for transformed image identification[J]. IEEE Transactions on Image Processing, 2008, 17(12): 2425-2441.

【13】Goshtasby A A. 2-D and 3-D image registration for medical, remote sensing, and industrial applications[M]. Wiley-Interscience, 2005.

【14】Myronenko A, Song X. Point set registration: coherent drift [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.

【15】Jian B, Vemuri B C. Robust point set registration using Gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.

【16】Liu S L, Sun G, Niu Z D. Robust rigid coherent point drift algorithm based on outlier suppression and its application in image matching[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095085.

【17】Li B. Probabilistic model for robust affine and non-rigid point set matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 371-384.

【18】Tao W B, Sun K. Robust point sets matching by fusing feature and spatial information using non-uniform Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3754-3767.

【19】Tang Zhi, Zhou Yinqing, Li Jingwen. Co-registration method based on correlation coefficient in InSAR data processing[J]. Radar Science and Technology, 2004, 2(2): 108-114.
唐 智, 周荫情, 李景文. InSAR数据处理中基于相关系数的配准方法[J]. 雷达科学与技术, 2004, 2(2): 108-114.

引用该论文

He Feiyue,Zhao Wei. Image Registration of Synthetic Aperture Radar Including Body of Water[J]. Acta Optica Sinica, 2017, 37(9): 0928001

贺飞跃,赵 伟. 含水体的合成孔径雷达图像配准[J]. 光学学报, 2017, 37(9): 0928001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF